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Abstract
Reinforcement learning (RL) has emerged as an effective approach for building an intelligent system, which involves
multiple self-operated agents to collectively accomplish a designated task. More importantly, there has been a renewed
focus on RL since the introduction of deep learning that essentially makes RL feasible to operate in high-dimensional
environments. However, there are many diversified research directions in the current literature, such as multi-agent and
multi-objective learning, and human-machine interactions. Therefore, in this paper, we propose a comprehensive software
architecture that not only plays a vital role in designing a connect-the-dots deep RL architecture but also provides a guideline
to develop a realistic RL application in a short time span. By inheriting the proposed architecture, software managers can
foresee any challenges when designing a deep RL-based system. As a result, they can expedite the design process and
actively control every stage of software development, which is especially critical in agile development environments. For
this reason, we design a deep RL-based framework that strictly ensures flexibility, robustness, and scalability. To enforce
generalization, the proposed architecture also does not depend on a specific RL algorithm, a network configuration, the
number of agents, or the type of agents.

Keywords Deep learning · Human-machine interactions · Learning systems · Multi-agent systems ·
Reinforcement learning · Software architecture

1 Introduction

Reinforcement learning (RL) has attracted a great deal
of research attention owing to its learning procedure that
allows agents to directly interact with the environment. As
a result, an RL agent can imitate human learning process to
achieve a designated goal, i.e., an agent can carry out trial-
and-error learning (exploration) and draw on “experience”
(exploitation) to improve its behaviours [1, 2]. Therefore,
RL is used in a variety of domains, such as IT resources
management [3], cyber-security [4], robotics [5–8], control
systems [9–12], recommendation systems [13], stock trad-
ing strategies [14], bidding and advertising campaigns [15],
and video games [16–18]. However, traditional RL methods
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and dynamic programming [19], which use a bootstrapping
mechanism to approximate the objective function, cease to
work in high-dimensional environments due to limitation in
memory and computational load requirements. This “curse
of dimensionality” issue creates a major challenge in RL
principle.

Figure 1 depicts an RL problem by using a Unified Mod-
eling Language (UML) [20] sequential diagram. Specifi-
cally, the problem includes two entities: a decision maker
and an environment. The environment can be an artificial
simulator or a wrapper of a real-world environment. While
the environment is a passive entity, the decision maker is
an active entity that periodically interacts with the environ-
ment. In the RL context, a decision maker and an agent are
interchangeable, though they can be two identified objects
from a software design perspective.

At first, the decision maker perceives a state st from the
environment. Then it uses its internal model to select the
corresponding action at . The environment interacts with the
chosen action at by sending a numerical reward rt+1 to the
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Fig. 1 A UML sequential
diagram to describe an RL
problem

decision maker. The environment also brings the decision
maker to a new state st+1. Finally, the decision maker uses
the current transition ϑ = {at , st , rt+1, st+1} to update its
decision model. This process is iterated until t equals T ,
where sT denotes the terminal state of an episode. There
are different methods to develop a decision model, such
as fuzzy logic [21], genetic algorithms [22], or dynamic
programming [23]. In this paper, however, we consider a
deep neural network as the decision model.

The diagram in Fig. 1 infers that RL is capable of online
learning because the model is updated continuously with
incoming data. However, RL can be performed offline via
a batch learning [24] technique. In particular, the current
transition ϑ can be stored in an experience replay [25] and
retrieved later to train the decision model. The goal of an
RL problem is to maximize the expected sum of discounted
reward Rt , i.e.,

Rt = rt+1 + γ rt+2 + γ 2rt+3 + ... + γ T −t−1rT ,

where γ denotes the discounted factor and 0 < γ ≤ 1.
In 2015, Google DeepMind [26] announced a break-

through in RL by combining it with deep learning to create

an intelligent agent that can beat a professional human
player in a series of 49 Atari games. The idea was to use
a deep neural network with convolutional layers [27] to
directly process raw images (states) of the game screen to
estimate subsequent actions. The study was highly valued
because it opened a new era of RL with deep learning,
leading to partially solving the curse of dimensionality. In
other words, deep learning offers a great complement for RL
in a wide range of complicated applications. For instance,
Google DeepMind created a program, AlphaGo, which beat
the Go grandmaster, Lee Sedol, in the best-of-five tour-
nament in 2016 [28]. AlphaGo is a full-of-tech AI based
on Monte Carlo Tree Search [29], a hybrid network (pol-
icy network and value network), and a self-taught training
strategy [30]. Other applications of deep RL can be found
in self-driving cars [31, 32], helicopters [33], or even NP-
hard problems such as Vehicle Routing Problem [34] and
combinatorial graph optimization [35].

As stated above, deep RL is crucial owing to its appealing
learning mechanism and widespread applications in the real
world. In this study, we further delve into practical aspects
of deep RL by analyzing challenges and solutions while
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designing a deep RL-based system. Furthermore, we con-
sider a real-world scenario where multiple agents, multiple
objectives, and human-machine interactions are involved.
Firstly, if we can take advantage of using multiple agents
to accomplish a designated task, we can shorten the wall
time, i.e., the computational time to execute the assigned
task. Depending on the task, the agents can be coop-
erative or competitive. In the cooperative mode, agents
work in parallel or in pipeline to achieve the task [36].
In the case of competition, agents are scrambled, which
basically raises the resource hunting problem [37]. How-
ever, in contrast to our imagination, competitive learning
can be fruitful. Specifically, the agent is trained continu-
ally to place the opponent into a disadvantaged position
and the agent is improved over time. As the opponent
is also improved over time, this phenomenon eventually
results in a Nash equilibrium [38]. Moreover, competitive
learning promotes the self-taught strategy (e.g. AlphaGo)
and a series of techniques such as the Actor-Critic archi-
tecture [39], opponent modeling [40], and Generative
Adversarial Networks [41]. In this respect, we notice the
problem of moving target [42] in multi-agent systems,
which describes a scenario when the decision of an agent
depends on other agents, thus the optimal policy becomes
non-stationary [43].

Secondly, a real-world objective is often complicated as
it normally comprises multiple sub-goals. It is straightfor-
ward if sub-goals are non-conflicting because they can be
seen as a single composite objective. A more challenging
case is when there are conflicting objectives. One solution is
to convert a multi-objective problem into a single objective
counterpart by applying scalarization through an applica-
tion of a linear weighted sum for individual objective [44] or
non-linear methods [45]. These approaches are categorized
as single-policy methods. In contrast, multi-policy meth-
ods [46] seek multiple optimal policies at the same time.
While the number of multi-policy methods is restricted, they
are able to offer powerful solutions. For instance, the Con-
vex Hull Value Iteration algorithm [47] computes a set of
objective combinations to retrieve all deterministic opti-
mal policies. To benchmark a multi-objective method, we
can find or approximate a boundary surface, namely Pareto
dominance, which presents the maximum performance of
different weights (if scalarization is used) [48]. Recent stud-
ies have integrated multi-objective mechanisms into deep
RL models [49, 50].

On the other hand, human-machine interaction is another
key factor in designing a usable and useful deep RL-
based system. A self-driving car, for example, should accept
human intervention in emergency situations [31, 32]. There-
fore, it is critical to ensure a certain level of safety while
designing a hybrid system in which humans and machines

can work together. Due to its importance, Google Deep-
Mind and OpenAI have presented novel ways to encourage
various innovations in recent years [51]. For instance, Chris-
tiano et al. [52] proposed a novel scheme that accepts human
feedback during the training process. However, the method
requires an operator to constantly observe the agent’s behav-
ior, which is an onerous and error-prone task. Recent
work [53] provided a practical approach by introducing a
behavioral control system. The system is used to control
multiple agents in real time via human dictation. Table 1
summarizes key terminologies that are widely used in RL
contexts (Table 1).

In summary, our study contributes to the following
aspects:

• We present an overall picture of contemporary deep
RL (Table 2). We consider state-of-the-art deep RL
methods in three key aspects of pertaining to real-
world applications such as multi-agent learning, multi-
objective problems, and human-machine interaction.
Thereafter, the paper offers a checklist for software
managers, a guideline for software designers, and a
technical reference for software programmers.

• We analyse challenges and difficulties in designing a
deep RL-based system, contributing towards minimis-
ing possible mistakes during its development process.
In other words, software designers can inherit the pro-
posed design, foresee difficulties, and eventually expe-
dite the entire development procedure of an RL-based
system, especially in agile software development.

• We provide the source codes of our proposed frame-
work in [54] (Table 3). Based on the template, RL
beginners can design an RL method and implement it in
real-world applications in a short time span. As a result,
our work contributes toward promoting the use of deep
RL to a wider community. A direct usecase of our study
is to employ an educational framework that is used to
demonstrate basic RL algorithms.

The paper has the following sections. Section 2 presents
a survey on state-of-the-art deep RL methods in different
research directions. Section 3 describes the proposed system
architecture, which supports multiple agents, multiple
objectives, and human-machine interactions. Concluding
remarks are given in Section 4.

2 Literature review

2.1 Single-agent methods

The first advent of deep RL, namely a Deep Q-Network (DQN)
[26], basically used a deep neural network to estimate values
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Table 3 Demonstration codes of different use cases [54]

Use case Description Source Code

1. How to inherit an existing learner? Develop a Monte-Carlo learner that inher-
its the existing Q-Learning learner

fruit/learners/mc.py

2. Develop a new environment Create a Grid World [1] environment that
follows the framework’s interface

fruit/envs/games/grid world/

3. Develop a multi-agent environment
with human-agent interaction

Create a Tank Battle [53] game in which
humans and AI agents can play together

fruit/envs/games/tank battle/

4. Multi-objective environment and
multi-objective RL

Use a multi-objective learner (MO Q-
Learning) to train an agent to play Moun-
tain Car [46]

fruit/samples/basic/multi objectives test.py

5. Multi-agent learner with human-
agent interaction

Create a multi-agent RL method based on
A3C [91] and apply it to Tank Battle

fruit/samples/tutorials/chapter 6.py

6. How to use a plugin? Develop a TensorForce plugin, extract the
PPO learner, and train an agent to play
Cart Pole [1]

fruit/plugins/quick start.py

of state-action pairs via a Q-value function (a.k.a., action-
value function or Q(s, a)). Thereafter, a number of variants
based on DQN were introduced to improve the origi-
nal algorithm. Typical extensions are Double DQN [64],
Dueling Network [65], Prioritized Experience Replay [66],
Recurrent DQN [67], Attention Recurrent DQN [59], and
an ensemble method named Rainbow [68]. These meth-
ods use an experience replay to store historical transitions
and retrieve them in batches to train the resulting network.
Moreover, a separate target network can be used to mitigate
the correlation of sequential data and prevent training net-
work from overfitting.

Instead of estimating the action-value function, we can
directly approximate the agent’s policy π(s). This approach
is known as policy gradient or policy-based methods. Asyn-
chronous Advantage Actor-Critic (A3C) [69] is one of the
first policy-based deep RL methods in the literature. A3C
comprises two networks: an actor network to estimate the
agent policy π(s) and a critic network to estimate the state-
value function V (s). Additionally, to stabilize the learning
process, A3C uses an advantage function, i.e., A(s, a) =
Q(s, a) − V (s). There is a synchronous version of A3C,
namely A2C [69], which has the advantage of being simpler
but with comparable or better performance. A2C miti-
gates the risk of multiple learners from overlapping when
updating the weights of the global networks.

There have been a great number of policy gradient meth-
ods since the development of A3C. For instance, UNsuper-
vised REinforcement and Auxiliary Learning (UNREAL)
[70] used multiple unsupervised pseudo-reward signals
simultaneously to improve the learning efficiency in com-
plicated environments. Rather than estimating a stochastic
policy, Deterministic Policy Gradient [71] (DPG) seeks for
a deterministic policy, which significantly reduce data sam-
pling. Moreover, Deep Deterministic Policy Gradient [72]

(DDPG) combined DPG with DQN to enable learning of
a deterministic policy in a continuous action space using
an actor-critic architecture. To further stabilize the train-
ing process, a Trust Region Policy Optimization (TRPO)
method [73] integrated Kullback–Leibler divergence [74]
into the training procedure, leading to a complicated
method. In 2017, Wu et al. [75] proposed Actor-Critic using
Kronecker-Factored Trust Region (ACKTR), which applied
Kronecker-factored approximation curvature into gradient
update steps. Additionally, Actor-Critic with Experience
Replay (ACER) [76] was introduced to offer an efficient off-
policy sampling method based on A3C and an experience
replay. To simplify the implementation of TRPO, ACKTR,
and ACER, Proximal Policy Optimization (PPO) [77] is pro-
posed to exploit a clipped “surrogate” objective function
together with stochastic gradient ascent. Soft Actor-Critic
(SAC) [62, 63] uses the maximum entropy reinforcement
learning framework that aims to learn a stochastic policy
that maximizes both the reward and the entropy. In other
words, SAC learns an actor that succeeds at the task but is
as random as possible. Concurrently, Twin-Delayed DDPG
(TD3) [61] focuses on fixing the issue of value overestima-
tion of DDPG by introducing three tricks: clipped double-Q
learning, policy update delays, and target policy smooth-
ing. Both SAC and TD3 are quite comparable, and they are
currently considered state-of-the-art methods on continuous
control domains. Some studies combined policy-based and
value-based methods such as [78–80] or on-policy and off-
policy methods such as [81, 82]. Table 2 presents a summary
of key deep RL methods and their implementation. Based on
specific application domains, software managers can select
a suitable deep RL method to act as a baseline for the target
system.

Recently, many studies have focused on efficient training
and state-of-the-art performance in various tasks and settings
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in the field of RL. For instance, D4PG (Distributed Dis-
tributional Deep Deterministic Policy Gradients) [83] was
proposed to improve the performance of RL in a wide
array of control tasks, such as robotics control with a
finite number of discrete actions. To efficiently train an
agent in a scalable RL system, Espeholt et al. introduced a
fast and low-cost RL algorithm, namely SEED RL (Scal-
able and Efficient Deep RL), which could train numerous
frames per second [84]. Moreover, a self-predictive repre-
sentation learning algorithm [85] was proposed for RL to
exploit data augmentation and future prediction objective.
Using the algorithm, agents could learn future latent state
representations with limited interactions.

2.2 Multi-agent methods

In multi-agent learning, there are two widely used schemes
in the literature: individual and mutual. In the individual
scheme category, each agent in the system can be considered
as an independent decision maker and other agents as part
of the environment. In this way, any deep RL methods in
the previous subsection can be used in multi-agent learning.
For instance, Tampuu et al. [86] used DQN to create an
independent policy for each agent. Behavioural convergence
of the involved agents was analysed with respect to
cooperation and competition. Similarly, Leibo et al. [37]
introduced a sequential social dilemma, which basically
used DQN to analyze the agent’s strategy in Markov games
such as Prisoner’s Dilemma, Fruit Gathering, and Wolfpack.
However, the approach limits the number of agents due
to computational complexity with the number of policies.
To overcome this obstacle, Nguyen et al. developed a
behavioural control system [53] for homogeneous agents to
share the same policy. As a result, the method is robust and
scalable. Another problem in multi-agent learning is the use
of an experience replay, which amplifies the non-stationary
problem due to asynchronous data sampling of different
agents [43]. A lenient approach [42] can subdue the problem
by mapping transitions into decaying temperature values,
which basically controls the magnitude of updating different
policies.

In the mutual scheme category, agents can “speak” with
each other via a settled communication channel. While
agents are often trained in a centralized manner, they even-
tually operate in a decentralized fashion [87]. In other
words, a multi-agent RL problem can be divided into two
sub-problems: a goal-directed problem and a communi-
cation problem. For instance, Multi-agent DDPG (MAD-
DPG) [88] was proposed to employ DDPG in a multi-agent
environment. Specifically, Foerster et al. [89] introduced
two communication schemes based on the centralized-
decentralized rationale: Reinforced Inter-Agent Learning
(RIAL) and Differentiable Inter-Agent Learning (DIAL).

While RIAL reinforces agent learning by sharing parame-
ters, DIAL allows inter-communication between agents via
a shared medium. Both methods, however, operate with
a discrete number of communication actions. As opposed
to RIAL and DIAL, Communication Neural Net (Comm-
Net) [90] enabled communication by using a continuous
vector. As a result, agents are trained to communicate by
backpropagation. However, CommNet limits the number
of agents due to computational complexity. To make it
scalable, Gupta et al. [91] introduced a parameter sharing
method to handle a large number of agents. However, the
method only worked with homogeneous systems. Nguyen et
al. [53] extended the study in [91] to heterogeneous systems
by designing a behavioral control system. For further read-
ing, comprehensive reviews on multi-agent RL can be found
in [92, 93].

In recent years, many algorithms have been introduced
for multi-agent RL (MARL). Shu and Tian proposed M3RL
(Mind-awareMulti-agent Management RL) to implement an
optimal collaboration within agents by training a ”super”
agent to manage member agents [94]. The super-agent was
trained in both policy learning and agent modeling, i.e.,
by combining imitation learning and RL. As a result, the
super-agent could assign members to perform suitable tasks
and maximise the overall productivity while minimizing
payments for rewarding them with bonuses. Yang et al. pre-
sented CM3 (Cooperative Multi-goal Multi-stage MARL)
using a novel multi-stage curriculum to learn both indi-
vidual goal attainment and collaboration in MARL sys-
tems [95]. In CM3, an augmentation function was used
to bridge value function and policy function across the
multi-stage curriculum. Another approach, Evolutionary
Population Curriculum (EPC) was proposed by Long et
al. [96], which learned well-balanced policies in large-
scale MARL systems. Additionally, in many real-world
MARL systems, communication between agents is required
to make sequential decisions in fully collaborative multi-
agent tasks. Kim et al. presented a SchedNet for MARL
systems to schedule inter-agent communication when the
communication bandwidth is limited and the medium is
shared among agents [97]. In cooperative MARL systems,
common knowledge between the agents is critical to coor-
dinate agent behaviours. Therefore, Schroeder de Witt et
al. proposed MACKRL (Multi-Agent Common Knowledge
RL) to learn a hierarchical policy tree [98]. MACKRL
helped multiple agents to learn a decentralized policy by
exploring and exploiting commonly available knowledge.
However, exploration in MARL is a challenging prob-
lem. Christianos et al. proposed SEAC (Shared Experience
Actor-Critic) for MARL to combine the gradient infor-
mation of agents to share experience among agents in an
actor-critic architecture [99]. Recently, to factorize the joint
value function and overcome the limitation of value-based
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MARL in terms of scalability, a duplex dueling multi-agent
Q-learning, namely QPLEX [100] was proposed to fully
support centralized training and decentralized execution in
MARL systems.

In summary, it is critical to address the following factors
in multi-agent learning as they significantly impact on the
target software architecture:

• It is preferable to employ a centralized-decentralized
rationale in a multi-agent RL-based system because the
training process is time-consuming and computation-
ally expensive. A working system requires hundreds to
thousands of training sessions by searching through the
hyper-parameter space to find an optimal solution.

• communication between agents can be realistic or
imaginary. In realistic communication, agents “speak”
with each other using an established communication
protocol. However, there is no actual channel in imagi-
nary communication. Agents are trained to collaborate
using a specialized network architecture. For instance,
OpenAI [88] proposes an actor-critic architecture where
the critic is augmented with other agents’ policy infor-
mation. As a result, both methods can differentiate how
to design an RL-based system.

• A partially observable environment has a great impact
on designing a multi-agent system because each agent
has its own unique perspective of the environment.
Therefore, it is important to first carefully examine
the environment and application type to avoid any
malfunction in the design.

2.3 Meta-RLmethods

Meta reinforcement learning or Meta-RL employs the
principle of meta-learning in RL. The major difference from
traditional RL is that the last reward rt−1 and the last
action at−1 are incorporated into the policy observation.
The key components of Meta-RL consist of a model with
memory (e.g., RNN (Recurrent Neural Networks), LSTM
(Long short-term memory)), meta-learning algorithm, and
distribution of MDPs. Meta-RL aims to aid agents to adapt
to new tasks by using a small amount of experience.

Wang et al. [101] presented a novel approach named
Deep Meta-RL based on meta-learning with an RNN. In
Deep Meta-RL, agents learn new tasks rapidly by acquir-
ing the knowledge from previous experience. Additionally,
learning from spare and under specified rewards is a chal-
lenging problem in RL, e.g., when an agent is required
to observe a complex state and provide sequential actions
simultaneously. To overcome this problem, a meta reward
learning algorithm leverage meta-learning and Bayesian
strategy, which eventually optimises an auxiliary reward

function [102]. Although deep Meta-RL algorithms aid
agents to learn new tasks rapidly by a small amount
of experience, the lack of a mechanism to explain task
uncertainty in sparse-reward problems remains unsolved.
Off-policy Meta-RL algorithm using probabilistic context
variables, named PEARL (Probabilistic Embeddings for
Actor-critic Reinforcement Learning) [103] was designed
to improve meta-training efficiency. Another challenge in
Meta-RL is the chicken-and-egg problem, which occurs
when agents are required to explore and exploit relevant
information in an end-to-end training. Liu et al. proposed
a decoupling exploration and exploitation in Meta-RL
named DREAM to overcome this canonical problem and
avoid local optima [104]. However, existing Meta-RL algo-
rithms are compromised when the rewards are sparse. To
solve this problem, a meta-exploration namely Hyper-sate
Exploration (HyperX) [105] was introduced to approximate
exploration strategies based on a Bayesian RL model.

In MARL, agents interact with each other by cooperat-
ing or competing to maximize their return and information
gain from all agents. A framework named IBRL (Interac-
tive Bayesian RL) was used to find adaptive policies under
uncertain scenarios with prior belief. However, the frame-
work was not intractable in most settings and restricted
to light-weight tasks or simple agent models. Therefore,
Zintgraf et al. proposed a meta-learning deep IBRL for
MARL to overcome this limitation [106]. Recently, many
exploratory deep RL algorithms have been proposed based
on task-agnostic objectives. However, it is necessary to
learn effective exploration from prior experience. Gupta et
al. presented MAESN (Model Agnostic Exploration with
Structured Noise) using gradient-based meta-learning and
a learned latent exploration space [107]. Another limita-
tion in Meta-RL is that most existing Meta-RL methods can
be sensitive with respect to distribution shift of a testing
task, leading to performance degradation. In this respect, a
model-based adversarial Meta-RL method [108] was pro-
posed to overcome this issue.

2.4 RL challenges

In this subsection, we discuss the major challenges in
designing a deep RL-based system and the corresponding
solutions. To remain concise, the proposed framework is not
hampered by the existing limitations, as it is straightforward
to extend our proposed architecture to support these
rectifications.

Catastrophic forgetting is a problem in continual learn-
ing and multi-task learning. Consider the scenario where
a network is trained to learn the first task. In this case,
the neural network gradually forgets the knowledge of the
first task to adopt the new one. One solution is to use
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regularization [109, 110] or a dense neural network [111,
112]. However, these approaches are only feasible with a
limited number of tasks. Recent studies introduce more
scalable approaches such as Elastic Weight Consolidation
(EWC) [113] or PathNet [114]. While EWC finds a network
configuration to yield the best performance in learning dif-
ferent tasks, PathNet uses a “super” neural network to learn
the knowledge of different tasks in different paths.

Policy distillation [115] or transfer learning [116, 117]
can be used to train an agent to learn individual tasks and
collectively transfer the knowledge to a single network.
Transfer learning is often used when the actual experiment
is expensive and intractable. In this case, the network is
trained with simulations and is deployed later in the target
experiment. However, a negative transfer may occur when
the performance of the learner is lower than the trainer.
In this respect, the concept of Hierarchical Prioritized
Experience Replay [116] was introduced to use high-level
features of a task and selects important data from the
experience replay to mitigate negative transfer. One recent
study [118] proposed the principle of mutual learning
to achieve a comparable performance between actual
experiment and simulations.

Another obstacle in RL is dealing with a long-horizon
environment with sparse rewards. In such tasks, the agent
hardly receives any reward, and it can easily be trapped
in local minimum solutions. One solution is to use reward
shaping [119] that continuously instructs the agent to
achieve the objective. The problem can also be divided
into a hierarchical tree of sub-problems where the parent
problem has a higher abstraction than that of the child prob-
lem (Hierarchical RL) [120]. To encourage self-exploration,
intrinsic reward signals can be introduced to reinforce the
agent to make a generic decision [121]. State-of-the-art
methods of intrinsic motivation can be found in [122–124].
Andrychowicz et al. [125] proposed Hindsight Experience
Replay to implicitly simulate curriculum learning [126] by
creating imagined trajectories in experience replay with pos-
itive rewards. In this way, an agent can learn from failures
and can automatically generalize a solution in successful
cases.

A variety of RL-related methods have been proposed
to make RL feasible in large-scale applications. One
approach is to augment the neural network with a “mem-
ory” to enhance sample efficiency in complicated environ-
ments [127, 128]. Additionally, to enforce scalability, many
distributed methods can be employed, such as Distributed
Experience Replay [129], deep RL acceleration [130], and
distributed deep RL [131]. In addition, imitation learning
can be used together with inverse RL to accelerate train-
ing by directly learning from expert demonstration and
extracting the expert’s cost function [132].

2.5 Deep RL framework

In this subsection, we discuss the latest deep RL frameworks
in the literature. We select the libraries based on different
factors including Python-based implementation, clear doc-
umentation, reliability, and active community. Based on our
analysis, software managers can select a suitable framework
depending on the project requirements.

• Chainer – Chainer [58] is a powerful and flexible frame-
work of neural networks. The framework is currently
supported by IBM, Intel, Microsoft, and Nvidia. It pro-
vides an easy way to manipulate neural networks such
as creating a customized network, visualizing a com-
putational graph, and supporting a debug mode. It also
implements a variety of deep RL methods. However,
the Chainer architecture is complicated, which requires
a great effort to develop a new deep RL method. The
number of integrated environments is also limited, e.g.,
Atari [133], OpenAI Gym [134], and Mujoco [135].

• Keras-RL – Keras-RL [136] is a friendly deep RL
library, which is recommended for deep RL beginners.
However, the library provides a limited number of deep
RL methods and environments.

• TensorForce – TensorForce [137] is an ambitious
project that targets both industrial applications and
academic research. The library has the best modu-
lar architecture we have reviewed so far. Therefore,
it is convenient to use the framework to integrate
customized environments, modify network configura-
tions, and manipulate deep RL algorithms. However,
the framework has a deep software stack (“pyramid”
model) that includes many abstraction layers, as shown
in Fig. 2. This hinders novice users in prototyping a new
deep RL method.

• OpenAI Baselines – OpenAI Baselines [57] is a
high-quality framework of contemporary deep RL. In
contrast to TensorForce, the library is suitable for
researchers who want to reproduce original results.
However, OpenAI Baselines is unstructured and inco-
hesive. Moreover, the codebase is no longer maintained
by OpenAI.

• Stable-Baselines and Stable-Baselines3 - Stable-Base-
lines [138] is an attempt to port Tensorflow-implemented
RL algorithms in OpenAI Baselines in Pytorch. It grad-
ually grows into a reliable source for baseline RL algo-
rithms. The project is now actively maintained under a
different repository - Stable-Baselines3 [139]. This new
codebase’s advantage is the ease of modifying exist-
ing algorithms with modularized codes. Moreover, it
is actively maintained; therefore, the authors are very
responsive in answering questions.
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Fig. 2 A “pyramid” software architecture

• RLLib – RLLib [56] is a well-designed deep RL frame-
work that allows deploying deep RL in distributed
systems. The usage of RLLib is not friendly for RL
beginners.

• RLLab – RLLab [140] provides diverse deep RL models
including TRPO, DDPG, Cross-Entropy Method, and
Evolutionary Strategy. While the library is friendly to
use, it is not straightforward in terms of modifications.

• PettingZoo – PettingZoo [141] is a Python library,
which supports a wide range of MARL environments
and can be accessible for both university and non-expert
researchers. However, it requires other languages to
support games with more than 10,000 agents. Moreover,
it does not support competitive games where different
agents compete with each other.

• MAgent – MAgent [142] is a MARL platform that sup-
ports researchers to develop artificial collective intel-
ligence at both individual agent and society levels. MAgent
has limited algorithms and does not support continuous
environments.

• Acme – A framework for distributed RL namely Acme
is proposed by DeepMind [143]. Acme is a modular,
lightweight tool that helps researchers to re-implement
RL algorithms in both research and industrial environ-
ments. It also aids training of RL algorithms in both
single-actor and distributed paradigms.

• Megaverse – Megaverse [144] is the first immersive 3D
simulation framework for embodied agents and RL that
supports multiple agents in immersive environments with
more than 1,000,000 actions per second on a single
8-GPU node. The framework requires extensive com-
putational resources to democratize deep RL research.

• Tianshou - Tianshou [145] is a modularized Pytorch
codebase with friendly APIs. Besides supporting stan-
dard algorithms, this codebase supports memory-based
agents needed to tackle partially observable MDPs
(POMDPs).

In summary, most frameworks focus on the performance
of deep RL methods. As a result, those frameworks limit
code legibility, restricting RL users in terms of readability
and modifications. In this paper, we propose a comprehen-
sive framework that has the following properties:

• Allow new users, including novice developers, to
prototype a deep RL method in a short period of
time by following a modular design. As opposed to
TensorForce, we limit the number of abstraction layers
and avoid the pyramid structure.

• The framework is friendly with a simplified user inter-
face. We provide an API based on three key concepts:
policy network, network configuration, and learner.

• Scalability and generalization are realised in our frame-
work, while supporting multiple agents, multiple objec-
tives, and human-machine interactions.

• A concept of unification and transparency is introduced
by creating plugins. Plugins are gateways that extract
learners from other libraries and plug them into our
proposed framework. In this way, users can interact
with different frameworks using the same interface.

3 A prospective RL software architecture

In this section, we examine core components towards
designing a comprehensive deep RL framework, which
basically employs generality, flexibility, and interoperabil-
ity. We aim to support a broad range of RL-related applica-
tions that involve multiple agents, multiple objectives, and
human-agent interaction. We use the following pseudocode
to describe a function signature:

where → denotes a return operation, A is a scalar value, [...]
denotes an array, and {...} denotes a list of possible values of
a single variable.

3.1 Environment

First, we create a unique interface for the environment to
establish a communication channel between the framework
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and agents. However, to reduce complexity, we put any
human-related communication into the environment. As
a result, human interaction assumes as a part of the
environment and is hidden from the framework, i.e., the
environment provides two interfaces: one for the framework
and one for human, as shown in Fig. 3. While the framework
interface is often in programming level (functions), the
human interface has a higher abstraction mostly in human
understanding forms such as voice dictation, gesture
recognition, or control system.

The environment framework interface provides the fol-
lowing functions:

• clone(): the environment can duplicate itself. The
function is useful when an RL algorithm requires
multiple learners simultaneously (e.g. A3C).

• reset(): reset the environment to its initial state. The
function must be called after or before an episode.

• step([a1, a2, ..., aN ]) → [r1, r2, ..., rM ]: executes N

specified actions of N agents in the environment. The
function returns M rewards, each of which represents
an objective function.

• get state() → [s1, s2, ..., sN ]: retrieves the current
states of the environment. If the environment is a
partially observable MDP, the function returns N states,
each presents the current state of an agent. However,
if the environment is a fully observable MDP, we have
s1 = s2 = ... = sN = s.

• is terminal() → {True, False}: checks whether an
episode is terminated.

• get number of objectives() → M: is a helper func-
tion that indicates the number of objectives in the
environment.

• get number of agents() → N : is a helper function that
indicates the number of agents in the environment.

Fig. 3 A conceptual model of the environment with a human interface

In addition, it is important to consider the following
questions during the design of an environment component,
which has a significant impact on subsequent design stages:

• Is it a simulator or a wrapper? In the case of a wrapper,
the environment is already developed and configured.
Our task is then to develop a wrapper interface that
can compatibly interact with the framework. In contrast
to a wrapper, developing a simulator is complicated
and requires expert knowledge. In real-time applica-
tions, we first develop a simulator in C/C++ (for better
performance) and then create a Python wrapper inter-
face (for ease of integration). In this case, we need to
develop both simulator and wrapper.

• Is it stochastic or deterministic? A stochastic environ-
ment is more challenging to implement than a determin-
istic one. There are potential factors that contribute to
randomness of the environment. Consider an example
where a company intends to run a bicycle rental ser-
vice, in which N bicycles are equally distributed into M
potential locations. However, at a specific time, loca-
tion A has many bicycles due to limited customers. As a
result, bicycles in location A are delivered to other loca-
tions with higher demand. The company seeks devel-
opment of an algorithm that can balance the number of
bicycles in each place over time. This is a stochastic
environment example. We can start building a simple
stochastic model based on Poisson distribution to repre-
sent the bicycle demand in each place. We end up with a
complicated model based on a set of observable factors
such as rush hour, weekend, festival, etc. Depending on
the stochasticity of the model, we can decide to use a
model-based or model-free RL method.

• Is it complete or incomplete? A complete environment
provides sufficient information at any time to construct
a series of possible moves in the future (e.g. Chess
or Go). Completeness in information helps the deter-
mination of an effective RL method, e.g., a complete
environment can be solved with a careful planning
rather than a trial-and-error approach.

• Is it fully observable or partially observable? Observ-
ability of an environment is essential when designing
a deep neural network. A partially observable environ-
ment requires recurrent layers or an attention mech-
anism to enhance the network capacity during train-
ing. As an example, a self-driving scenario is partially
observable while a board game is fully observable.

• Is it continuous or discrete? As described in Table 1,
this factor is important to determine the type of methods
used, such as policy-based or value-based methods,
as well as network configurations, such as actor-critic
architectures.
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• How many objectives? Real-world applications often
have multiple objectives. If the importance weights
between objectives can be identified initially, it is rea-
sonable to use single-policy RL methods. Alternatively,
a multi-policy RL method can prioritize the importance
of an objective in real time.

• How many agents? A multi-agent RL-based system
is more complicated than a single-agent counterpart.
Therefore, it is essential to analyze the following
factors of a multi-agent system before delving into
the design: the number of agents, the type of agents,
communication capabilities, cooperation strategies, and
competitive potential.

3.2 Network

The neural network is a key module of our proposed
framework, which includes a network configuration and
a policy network, as illustrated in Fig. 4. A network
configuration defines the deep neural network architecture
(e.g. CNN (Convolutional Neural Networks) or LSTM),
loss functions (e.g. Mean Square Error or Cross Entropy
Loss), and optimization methods (e.g. Adam or SGD).
Depending on the project’s requirements, a configuration
can be divided to different abstraction layers, where the
lower abstraction layer is used as a mapping layer for

the higher abstraction layer. In the lowest abstraction level
(programming language), a configuration is implemented
by a deep learning library, such as Pytorch [146] (with
dynamic graph) or TensorFlow (with static graph). The next
layer is to use a scripting language, such as xml or json,
to describe the network configuration. This level is useful
because it provides a faster and easier way to configure
a network setting. For uses with limited knowledge in
implementation details such as system analysts, an intuitive
and easy-to-use graphical user interface is useful. However,
there is a trade-off here: the higher abstraction layer
achieves better usability and productivity but has a longer
development cycle.

A policy network is a composite component with a num-
ber of network configurations. The dependency between
a policy network and a configuration can be weak, i.e.,
an aggregation relationship. The policy network objective
is twofold. It provides a high-level interface that main-
tains connectivity with other modules in the framework,
and it initializes the network, saves the network parame-
ters into checkpoints, and restores the network parameters
from checkpoints. The neural network interface provides the
following functions:

• create network() → [θ1, θ2, ..., θK ]: instantiates a
deep neural network by using a set of network

Fig. 4 A neural network module
includes a network configuration
and a policy network
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configurations. The function returns the network param-
eters (references) θ1, θ2, ..., θK .

• save model(): saves the current network parameters
into a checkpoint file.

• load model([chk]): restores the current network param-
eters from a specified checkpoint file chk.

• predict([s1, s2, ..., sN ]) → [a1, a2, ..., aN ]: given the
current states of N agents s1, s2, ...,sN , the function uses
the network to predict the next N actions a1, a2, ..., aN .

• train network([data dict]): trains the network by using
the given data dictionary. The data dictionary often
includes the current states, current actions, next states,
terminal flags, and miscellaneous information (global
time step or objective weights) of N agents.

3.3 Learner

The last key module of our proposed framework is a learner,
as shown in Fig. 5. While the environment module and the
network module create the application shell, the learner acts
as an engine that allows the system to operate properly.
These three modules jointly create the backbone of the
system. In particular, the learner uses the environment
module to generate episodes. It manages the experience
replay memory and defines the RL implementation details,
such as multi-step learning, multi-threading, or reward
shaping. The learner is often created together with a
monitor. The monitor is used to manage multiple learners
(if multi-threading is used) and collect any data from the
learners during training, such as performance information
for debugging purposes and post-evaluation reports. The
learner collects necessary data, packs them into a dictionary
before sending them to the network module for training.

Additionally, a factory pattern [147] can be used to hide
the operation details between the monitor and the learner. As
a result, the factory component promotes higher abstraction
and usability through a simplified user API, as follows:

• create learner([monitor dict, learner dict]) → obj:
The factory creates a learner by using the monitor’s

Fig. 5 A high-level design of a learner module

data dictionary (such as batch size, the number of
epochs, and the report frequency) and the learner’s
data dictionary (the number of threads, epsilon values,
reward clipping thresholds, etc.).

• train(): trains the generated learner.
• evaluate(): evaluates the generated learner.

3.4 Plugin

Many RL methods are available in the literature, and it
is impractical to implement all of them. However, we
can reuse the implementation from existing libraries such
as TensorForce, OpenAI Baselines, or RLLab. To ensure
flexibility and interoperability, we introduce a concept of
unification by using plugins. A plugin is a piece of program
that extracts learners or network configurations from third
party libraries and plugs them into our framework. As a
result, the integrated framework provides a unique user API
to support a variety of RL methods. In this way, users do not
need to learn different libraries. The concept of unification
is described in Fig. 6.

A plugin can also act as a conversion program that
converts the environment interface of the library into the
environment interface of another library. As a result, the
proposed framework can work with any environment in
third party libraries and vice versa. Therefore, a plugin
should have the following functions:

• convert environment([source env]) → target env:
converts the environment interface from the source
library to the environment interface defined in the
target library.

• extract learner([param dict]) → learner: extracts the
learner from the target library.

• extract configuration([param dict]) → config: extracts
the network configuration from the target library.

3.5 Overall structure

Assembling everything together, we have a sequential
diagram of the training process, as described in Fig. 7.
The workflow divides the training process into smaller
procedures. Firstly, the factory instantiates a specified
learner (or a plugin) and sends its reference to the monitor.
The monitor clones the learner into multiple learner threads.
Each learner thread is executed until the number of epochs
exceeds a predefined threshold, K . The second loop within
the learner thread is used to generate episodes. In each
episode, a learner thread perceives the current states of
the environment and predicts the next actions using the
policy network and configuration network. The next actions
are applied to the environment. The environment returns
the next states and a terminal flag. The policy network
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Fig. 6 A unification of different
RL libraries by using plugins

Fig. 7 A UML sequential diagram of the training process
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Fig. 8 A UML sequential diagram of the evaluation process

Fig. 9 An inheritance relationship between learners and configurations

is trained for every L-step. There are minor changes in
the evaluation process, as shown in Fig. 8. Firstly, the
policy network’s parameters are restored from a specified
checkpoint file when initializing the learner. Secondly, all
training procedure calls are discarded when generating the
episodes.

To enhance usability and reduce redundancy, it is advis-
able to implement the framework in Object-Oriented Pro-
gramming (OOP). In this way, a new learner (configuration)
can be easily developed by inheriting existing learners
(configurations) in the framework, as shown in Fig. 9.

4 Conclusions

In this paper, we have presented a review on recent advances
in the RL literature with respect to multi-agent learning,
multi-objective learning, and human-machine interaction.
We have also examined different deep RL libraries and
analysed their limitations. Importantly, we have proposed a
novel deep RL framework that offers usability, flexibility,
and interoperability for developing RL-based systems. We
have highlighted the key concerns so that software managers
can avoid possible mistakes in designing an RL-based
application.

The proposed framework served as a generic template
to design and implement real-world RL-based applications.
Because the framework is developed in OOP, it is beneficial
to utilize OOP principles, such as inheritance, polymor-
phism, and encapsulation to expedite the development pro-
cess. We have created a flexible software layer stack, where
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the number of modules is minimal while maintaining a
certain level of cohesion. As a result, the learning curve is
not steep. By providing a simplified API, the framework
is suitable for novice developers who are new to design-
ing deep RL models, especially software engineers. The
proposed framework acts as a bridge to connect different
RL communities. Future developments of the framework
include employing an educational RL platform in univer-
sities and a pilot program that uses the framework to
demonstrate basic RL algorithms. A visual module is also
developed to serve those purposes.

Appendix A: Documentation
of the proposed framework

To keep the paper brief, we provide documentation of
the proposed framework as online materials [148]. These
include an installation guide, code samples, benchmark
scores, tutorials, an API reference guide, a class diagram,
and a package diagram. Table 3 lists the relevant demonstra-
tion codes of different use cases (codebase [54]).
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