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Abstract
A breakthrough in deep learning has led to improvements in speech
emotion recognition (SER), but these studies tend to process fixed-
length segments, resulting in degraded performance. Therefore,
multimodal approaches that combine audio and text features im-
prove SER but lack modality alignment. In this study, we intro-
duce HuBERT-CLAP, a contrastive language-audio self-alignment
pre-training framework for SER to address the aforementioned is-
sue. Initially, we employ CLIP to train a contrastive self-alignment
model using HuBERT for audio and BERT/DistilBERT for text to
extract discriminative cues from the input sequences and map in-
formative features from text to audio features. Additionally, Hu-
BERT in the pre-trained HuBERT-CLAP undergoes partial fine-
tuning to enhance the effectiveness in predicting emotional states.
Furthermore, we evaluated our model on the IEMOCAP dataset,
where it outperformed the non-pre-training model, achieving a
weighted accuracy of 77.22%. Our source code is publicly available
at https://github.com/oggyfaker/HuBERT-CLAP/ for reproducible
purposes.
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1 Introduction
In audio recordings or speech signals, speech emotion recognition
(SER) plays a pivotal role in identifying and understanding emo-
tional states. As technology advances, SER has become increasingly
vital in various fields, including signal processing, audio processing,
and affective computing. Its widespread adoption is evident across
diverse industries, such as e-learning, computer games, health-
care, human-computer interfaces, and human-robot interaction,
where it facilitates enhanced communication and user experience.
The expanding scope of SER applications is exciting, especially in
evaluating virtual interviews, online learning environments, and
instructional effectiveness.

SER typically follows two primary schemes: feature extraction
and emotion classification. Traditionally, researchers relied on hand-
crafted features and machine learning-based classifiers to discern
emotional states from speech signals, utilizing techniques such
as linear discriminant analysis and support vector machine classi-
fiers [7] or employing acoustic features with hierarchical decision
tree classifiers [11].

With the advent of deep learning, SER has witnessed significant
advancements. Researchers have developed end-to-end approaches
that outperform traditional methods. These include deep echo state
networks [6, 8], convolutional neural networks [14, 29], recurrent
neural networks [15, 18], and attention mechanisms or transform-
ers [9, 19]. Additionally, some studies have integrated the strengths
of both traditional and deep learning approaches to enhance SER
performance [12, 21].

Leveraging deep learning models in SER requires uniform prepa-
ration of inputs. Typically, this involves segmenting speech signals
into fixed-length chunks. However, this approach may result in in-
formation loss, as crucial featuresmight not be fully capturedwithin
the segment. To address this limitation, researchers have turned to
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multimodal approaches, combining information from both audio
and text sources to enhance SER performance [10, 26, 28]. Nonethe-
less, many studies focus on concatenating multimodal features
without aligning information between audio and text features.

Recently, Yang [24] employed HuBERT [5] in an ensemble learn-
ing approach for SER and achieved an accuracy of 70.24%. This
demonstrates that HuBERT is suitable for downstream SER tasks de-
spite its original design for speech representation learning. Adoma et
al. [1] conducted a comparative study to assess the performance of
pre-trained BERT [4], DistilBERT [17], and other models for text-
based emotion recognition. The study revealed that the BERT-based
model outperformed the DistilBERT-based model. However, the
DistilBERT-based model, with fewer parameters than BERT, holds
the potential for deploying SER applications on mobile and embed-
ded devices. More recently, Wu et al. [23] designed a pre-training
framework for audio representation learning utilizing a contrastive
learning strategy. However, the mentioned framework was devel-
oped based on CLIP (contrastive language-image pre-training) [16],
incorporating feature fusion and keyword-to-caption augmenta-
tion to accommodate various audio lengths, resulting in improved
performance.

In this study, we developed a contrastive language-audio self-
alignment pre-training approach for SER, utilizingwell-knownmod-
els for speech and text: HuBERT [5] and BERT [4]/DistilBERT [17].
HuBERT processed the audio input to extract audio embeddings,
while BERT/DistilBERT processed the text input to derive text em-
beddings. These embeddings were then inputted into CLIP [16], a
contrastive language-image pre-training framework, to align high-
level feature representations from audio and text using the scaled
pairwise cosine similarities and symmetric loss function based on
the cross-entropy loss function.

Following pre-training, the pre-trained HuBERT-CLAP model
was employed for downstream SER tasks. We trained and tested
the proposed method on the IEMOCAP dataset. Although HuBERT-
CLAP utilizes audio and text inputs for pre-training, only audio
input is required during downstream SER tasks and inference, mak-
ing it an unimodal SER model. Ablation and comparative analyses
demonstrated that our method outperformed the latest state-of-the-
art approach for SER on the same dataset. Furthermore, we con-
ducted a case study to assess the transferability of models trained
on the IEMOCAP dataset to the EmoDB dataset. In future research,
we aim to employ the knowledge distillation framework to train
a lighter model suitable for embedded devices and smartphones,
facilitating widespread application in human-computer interactions
and robotics.

The remaining sections of this paper are organized as follows:
Section 2 summarizes the related research to this study. In Sec-
tion 3, we introduce the proposed framework. Section 4 presents
a detailed account of the experimental results and comparisons.
Finally, Section 5 provides the conclusion of this study.

2 Related Work
2.1 Foundation Models
Several well-established models have recently emerged in the nat-
ural language processing (NLP) and speech processing domains,
including BERT, DistillBERT, and HuBERT. These models serve as

the backbone for many language-based and speech-based tasks,
and they are briefly summarized below.

HuBERT [5] or Hidden-Unit BERT is a self-supervised method
for speech representation learning that uses offline clustering to
generate target labels, which are then applied in a BERT-like pre-
diction task. HuBERT addresses challenges such as multiple sound
units per utterance, the absence of a sound unit lexicon during pre-
training, and the variable lengths of sound units without explicit
segmentation. By focusing prediction loss only on masked regions,
HuBERT encourages the model to learn both acoustic and linguistic
features from the continuous speech input. Additionally, it priori-
tizes consistency in the clustering process, helping the model learn
robust representations from speech data.

BERT [4], or Bidirectional Encoder Representations from Trans-
formers, is a widely used language model known for its strong
language understanding. Built on a bidirectional Transformer en-
coder, BERT is pre-trained on unlabeled text by considering both
left and right context. After pretraining, it can be fine-tuned with
a superficial output layer to excel in downstream tasks, such as
question answering, sentiment analysis, and multimodal emotion
recognition.

DistilBERT [17] is a compact, efficient, and lightweight Trans-
formermodel created through knowledge distillation during BERT’s
pretraining phase. With 40% fewer parameters than the BERT base
model, it offers a 60% increase in speed while retaining over 97%
of BERT’s performance, as demonstrated on the GLUE language
understanding benchmark.

2.2 Multimodal Emotion Recognition
Multimodal emotion recognition has advanced significantly in re-
cent years, with researchers exploring various audio, text, and visual
input combinations. Studies such as [10, 26–28] demonstrate that
integrating speech and text improves emotion recognition accuracy
by utilizing the complementary information from both modalities.
For example, Yoon et al.[26] enhanced emotion recognition sys-
tems’ performance by using audio and text as input modalities.
Zhanget al.[27] further improved the fusion of audio and text fea-
tures through a hybrid attention network. Similarly, Zhaoet al. [28]
extracted audio and text embeddings and fed them into a long
short-term memory (LSTM) module, followed by a sliding win-
dow attention mechanism to capture inter-modal interactions. The
resulting feature representations were then processed through a
multi-level high-response feature reuse module before being passed
to the classification head for final emotion recognition. Despite
these advancements, most studies rely on simple concatenation of
multimodal features without effectively aligning the information
between audio and text modalities.

3 Methodology
Our proposed HuBERT-CLAP framework operates through two
distinct stages, as illustrated in Figure 1. In the initial stage (Stage
1), we partially fine-tune HuBERT to process audio inputs, follow-
ing the strategy outlined in [22]. Concurrently, we employ either
DistilBERT to handle text inputs. Subsequently, CLIP is utilized to
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Figure 1: Architectural overview of the proposed HuBERT-CLAP, illustrating the integration of self-supervised speech repre-
sentation learning and audio-text alignment for emotion recognition.

align the extracted audio and text features, with the primary ob-
jective of ensuring that features learned from audio inputs closely
correspond with those derived from text inputs.

In stage 1, speech and text inputs are processed through the
speech model (HuBERT) and text model (BERT/DistilBERT) to ex-
tract both modality cues. Furthermore, we processed these cues
through a multilayer perceptron block with residual skip connec-
tions, followed by Layer Normalization to obtain embedding. No-
tably, a GELU (Gaussian Error Linear Unit) activation function is
applied after the first linear layer, and dropout is applied after the
second linear layer. Following the approach of CLIP [16] and the
framework in [23], these text and audio embeddings are utilized to
compute scaled pairwise cosine similarities and a symmetric loss
function based on the cross-entropy loss function.

In Stage 2, the pre-trained HuBERT-CLAP model from Stage 1
is harnessed for the downstream emotion recognition task. It is
important to note that only the HuBERT architecture within the pre-
trained HuBERT-CLAP undergoes partial fine-tuning in this stage.
We partially fine-tune the feature projection layer, transformer
blocks, contrastive project embedding block, and classifier head
for final emotional classification. Meanwhile, the feature extractor
blocks remain frozen without updating the parameters. Finally, the
features obtained by the classifier head are utilized to generate the
final prediction using cross-entropy with the softmax function.

In our two-stage approach, audio and text features were aligned
in the pre-trained HuBERT-CLAP model, and selected components
were fine-tuned to specific downstream tasks within the pre-trained
model. The initial stage involves aligning the extracted features
from speech and text inputs, ensuring they complement each other

effectively. This alignment process facilitates the creation of a uni-
fied representation that captures both modalities’ relevant informa-
tion. Subsequently, in the second stage, we leverage the pre-trained
model to refine this representation for the emotion recognition task.
To preserve the overall capabilities of the model, we only fine-tune
specific components, such as the feature projection layer and the
classifier head. As a result of this fine-tuning, the model is more
accurate at classifying emotions from speech inputs. In SER, our
approach maximizes the utility of pre-trained models.

4 Results and Discussion
4.1 Experimental Setup
4.1.1 Dataset. IEMOCAP is awell-knownEnglish emotional dataset
published by Busso et al. [3] in 2008. It consists of recordings from
ten performers, five male and five female, sampled at 48 kHz. Ini-
tially, there were nine different emotional categories in the dataset.
However, they were merged due to insufficient utterances in spe-
cific categories; they were merged, resulting in four main categories:
1,103 utterances for anger, 1,635 utterances for pleasure, 1,708 utter-
ances for neutrality, and 1,084 utterances for sorrow. Consequently,
these four emotional categories have become the standard for com-
parison in a wide range of research. The distribution percentage of
each emotional state in the IEMOCAP dataset is shown in Figure 2.

4.1.2 Implementation details. In the experiments, all audio samples
from the IEMOCAP dataset were converted to mono channel and
truncated to 8 seconds in length for both contrastive pre-training
and downstream SER task training. No additional audio augmen-
tation was applied. The PyTorch framework [13] was utilized to
implement the proposed method.



MMASIA ’24, December 03–06, 2024, Auckland, New Zealand Nguyen and Pham et al.

Figure 2: The distribution of emotion labels, displaying the
number of occurrences for each emotion category in the
IEMOCAP dataset.

In Stage 1, we utilized the pre-trained HuBERT1, BERT2, and
DistilBERT3 for pre-training. We utilize the CosAngularGrad op-
timizer with the CosineAnnealingLR scheduler. The learning rate
(LR) is set to 1e-4 for HuBERT and 1e-5 for BERT and DistilBERT,
with a minimum LR of 1e-6. We conduct training for 50 epochs
with a batch size of 16, a temperature of 1, a precision set to BF16,
and a dropout rate of 0.2.

In Stage 2, we employ the same optimizer, scheduler, and LR as
in Stage 1. However, the number of epochs is set to 30, and the
precision is 32-bit. Additionally, to prevent overfitting and train
more generalized models, we implement 5-fold cross-validation and
incorporate a dropout rate of 0.2.

To evaluate the effectiveness of the suggested approach, we
employ weighted accuracy (WA) as the primary metric due to the
imbalanced nature of the IEMOCAP dataset. Additionally, we utilize
t-SNE [20] to visualize the learned feature representations of the
proposed method.

4.2 Ablation Study
To validate the impacts and effectiveness of the contrastive pre-
training approach, we conducted an ablation study in three cases,
as illustrated in Table 1. Corresponding confusion matrices are
depicted in Figures 3a, 3b, and 3c. Employing the contrastive pre-
training approach yields superior results compared to not using
it. Furthermore, utilizing BERT for text embedding features out-
performs DistilBERT. The model incorporating HuBERT and BERT
pre-training achieves the highest performance with a WA of 77.22%.
Consequently, we designate this model as HuBERT-CLAP for sub-
sequent comparisons. Specifically, HuBERT-CLAP outperforms the
other two models by 0.31 to 7.18%.

1https://huggingface.co/facebook/hubert-base-ls960
2https://huggingface.co/google-bert/bert-base-uncased
3https://huggingface.co/distilbert/distilbert-base-uncased

Table 1: Ablation study comparing different architectures on
the IEMOCAP dataset for emotion recognition.

Model WA (%)
Only HuBERT without pre-training 70.04
HuBERT + DistilBERT pre-training 76.91
HuBERT + BERT pre-training 77.22

Table 2: Comparison of HuBERT-CLAP with recent state-of-
the-art methods on the IEMOCAP dataset.

Model Year WA (%)
CNN+Bi-GRU [29] 2020 70.39
SPU+MSCNN [14] 2021 66.60
LightSER [2] 2022 70.23
TIM-Net [25] 2023 71.65
HuBERT-CLAP (Our) 2024 77.22

4.3 Feature Analysis
To assess the effectiveness of the contrastive pre-training approach
compared to not using it, we utilized t-SNE [20] to visualize the dis-
tribution of emotions in the learned feature representations of the
three models employed in the ablation study. As shown in Figure 4,
the feature representations learned by the pre-training models ex-
hibit greater separation than those without pre-training. Specifi-
cally, the DistilBERT model demonstrates more overlapping points
between the four emotional classes than the one using BERT. This
observation aligns with the findings from Adoma’s study [1]. Based
on the results of the pre-training stage, HuBERT-CLAP features
are well aligned with text features extracted from BERT, indicating
that the model can learn robust feature representations during pre-
training, which can then be generalized during inference on new
data, as shown in the previous section with the case study.

4.4 Performance Comparison
Furthermore, to validate the enhanced performance of HuBERT-
CLAP, we compare it with the most recent state-of-the-art methods
on the IEMOCAP dataset, as detailed in Table 2. Results depicted in
Table 2 indicate that HuBERT-CLAP surpasses CNN+Bi-GRU [29],
SPU+MSCNN [14], LightSER [2], and TIM-Net [25] in terms of WA,
with gains of 6.83%, 10.62%, 6.99%, and 5.57%, respectively.

4.5 Case Study
To further assess the effectiveness and transferability of the pro-
posed method, we evaluated the three models trained on the IEMO-
CAP dataset using the EmoDB dataset. The original EmoDB dataset
consists of 535 samples covering seven emotions. However, to align
with the models trained on the IEMOCAP dataset, we selected four
similar emotions from the EmoDB for this study: anger (127 ut-
terances), happiness (71 utterances), neutral (79 utterances), and
sadness (62 utterances). It is important to note that the three mod-
els employed in this case study were trained exclusively on the
IEMOCAP dataset. The results are presented in Table 3.

As shown in Table 3, the performance trends are similar to those
observed in the IEMOCAP dataset. Additionally, the pre-training
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(a) (b) (c)

Figure 3: Confusion matrices illustrating the performance of the proposed models on the IEMOCAP dataset: (a) HuBERT
without pre-training, (b) HuBERT with DistilBERT pre-training, and (c) HuBERT with BERT pre-training for the downstream
SER task. The diagonal values represent the recall for each class.

(a) (b) (c)

Figure 4: Class-level t-SNE visualization of the proposed models on the IEMOCAP dataset: (a) HuBERT without pre-training, (b)
HuBERT with DistilBERT pre-training, and (c) the proposed HuBERT with BERT pre-training for the downstream SER task.

Table 3: Case study on the EmoDB dataset, evaluated using
models trained on the IEMOCAP dataset.

Model WA (%)
Only HuBERT without pre-training 60.02
HuBERT + DistilBERT pre-training 74.15
HuBERT + BERT pre-training 79.00

approach outperforms the non-pre-trainingmethod, with the model
utilizing both HuBERT and BERT pre-training achieving the highest
performance, with a WA of 79.00%.

5 Conclusion
This study developed HuBERT-CLAP, a framework that enhances
SER performance through contrastive language-audio self-alignment
pre-training. We use HuBERT and BERT/DistilBERT to extract au-
dio and text embeddings within a contrastive pre-training frame-
work. The primary objective is to align the features learned by Hu-
BERT from audio inputs with those obtained by BERT/DistilBERT
from text inputs. Subsequently, the pre-trained HuBERT from the

initial stage is utilized for the downstream emotion recognition
task.

Experimental results on the IEMOCAP dataset reveal that HuBERT-
CLAP achieves superior performance compared to approaches that
do not incorporate the contrastive pre-training technique. More-
over, it surpasses the latest state-of-the-art methods on the same
dataset. In future research endeavors, we aim to explore the knowl-
edge distillation framework to develop a more lightweight model
suitable for deployment on embedded devices and smartphones.
This advancement would facilitate broader human-computer in-
teractions and robotics applications, enhancing user experiences
across various domains.
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