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Speech emotion recognition has seen a surge in transformer models, which excel at understanding 
the overall message by analyzing long-term patterns in speech. However, these models come at a 
computational cost. In contrast, convolutional neural networks are faster but struggle with capturing 
these long-range relationships. Our proposed system, MemoCMT, tackles this challenge using a 
novel “cross-modal transformer” (CMT). This CMT can effectively analyze local and global speech 
features and their corresponding text. To boost efficiency, MemoCMT leverages recent advancements 
in pre-trained models: HuBERT extracts meaningful features from the audio, while BERT analyzes 
the text. The core innovation lies in how the CMT component utilizes and integrates these audio and 
text features. After this integration, different fusion techniques are applied before final emotion 
classification. Experiments show that MemoCMT achieves impressive performance, with the CMT 
using min aggregation achieving the highest unweighted accuracy (UW-Acc) of 81.33% and 91.93%, 
and weighted accuracy (W-Acc) of 81.85% and 91.84% respectively on benchmark IEMOCAP and ESD 
corpora. The results of our system demonstrate the generalization capacity and robustness for real-
world industrial applications. Moreover, the implementation details of MemoCMT are publicly available 
at https://github.com/tpnam0901/MemoCMT/ for reproducibility purposes.

Keywords Multimodal emotion recognition, Speech emotion recognition, Cross-modal transformer, Deep 
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Multimodal emotion recognition (MER) goes beyond traditional emotion recognition, which looks solely at the 
content of spoken words. This technology analyzes what we say and how we say it. By incorporating tone of voice, 
facial expressions, and even text transcript, MER paints a richer picture of our emotions during communication. 
This holds immense potential for various fields like healthcare, education, and customer service, paving the way 
for more nuanced and empathetic interactions between humans and machines1. As highlighted in2, there’s a 
growing need for advanced systems that process speech, video, and text to recognize emotions. Human speech is 
rich with emotional cues, allowing us to effortlessly convey our feelings during communication. This significant 
advancement has led to the creation of speech emotion recognition (SER) systems, representing a crucial step 
forward in understanding and interpreting human emotions through speech, which hold immense potential for 
real-world applications across various fields3. These applications include robotics, security, language translation, 
automated identification systems, intelligent toys, and even lie detection1.

Despite significant progress in speech processing, achieving high accuracy, real-time emotion recognition for 
practical use remains a challenge4,5. Researchers are leveraging cutting-edge technologies like attention-based 
approaches6,7 to improve speaker identification by analyzing their emotional state during speech. In contrast, 
researchers and scientists implemented several systems for emotion recognition via joint features learning-
based methods8–10 to enhance the recognition rate and tried text modality3,11 to further increase the model 
performance for real-time applications. Hence, Siriwardhana12 used a transformer-based pre-trained model to 
combine speech and text modalities, which are essential for recognizing emotions and improving the precision 
rate. Similarly, Feng et al.8  and Chen et al.13 integrated a speech emotion with automatic speech recognition 
(ASR) to make the system more intelligent for real-world applications. However, optimizing pre-trained models 
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for SER is complex, and further research and exploration are necessary14 to reduce the latency with a high 
recognition rate. A recent trend of deep learning (DL)-based attention mechanism rapidly growing in speech 
processing to improve performance by focusing on salient cues in speech and text sequence15–17.

In this regard, Xu et al.18 and Naderi and Nasersharif19 introduced a multi-head self-attention module 
to improve recognition rate, and20 used local attention to learn emotions automatically with high precision 
by a similar technique. The above-discussed approaches are black-box21, and their internal mechanisms are 
impossible to understand. Recent research has focused on explaining the internal workings and mechanism of 
DL-based techniques22 to understand multimodal emotion using biological signals according to Lin et al.23. The 
work in24 developed a model to evaluate different emotional elements and interpret their response for specific 
tasks. Hence, a method was developed by25 to identify the component input tensor responsible for a specific 
output. Therefore, Shrikumar et al.26 developed a technique for decomposing output predictions by tracking 
the contributions of each neuron. The network training must be conducted layer by layer, as this approach is 
not visible in current methods. This insight provides a solid foundation for creating an innovative DL technique 
to accurately interpret and decipher predictions for the speech emotion system. Adopting this layered training 
approach can enhance the model’s ability to capture hierarchical features in speech signals, potentially leading to 
more nuanced emotion recognition.

This method allows for fine-tuning individual layers, ensuring that each level of abstraction is optimized 
for emotion-relevant features. Furthermore, it enables better transparency and interpretability of the model’s 
decision-making process, addressing the ‘black box’ problem often associated with deep learning systems. 
The layer-by-layer training also facilitates the integration of domain-specific knowledge at different stages of 
the network, potentially improving the overall performance and generalization of the SER. Additionally, this 
technique may lead to more efficient training procedures, allowing for targeted optimization of specific layers 
without retraining the entire network. This could result in reduced computational requirements and faster model 
iterations. The insights gained from this layered training method could also be extended to other multimodal 
emotion recognition tasks, paving the way for more sophisticated and accurate affective computing systems.

In this study, we propose MemoCMT, a cross-modal transformer-based fusion method for MER, which 
leverages both audio and textual feature representations through a cross-modal transformer (CMT) mechanism 
(Fig.  1). Notably, we utilize the HuBERT27 network in the SER module and the BERT28 network in the text 
emotion recognition (TER) module. More specifically, the acoustic characteristics of the speech have been 
extracted via a pre-trained HuBERT model, and textual cues are extracted through a pre-trained BERT model. 
Moreover, investigate different MemoCMT design configurations to achieve optimal contextual modeling using 
a CMT inspired by cross-attention module19 and various aggregation techniques (including class token (CLS), 
mean aggregation (MEAN), min aggregation (MIN), and max aggregation (MAX)). It should be noted that the 
pre-trained HuBERT model can simultaneously learn and align audio with its transcripts during pre-training. 
By leveraging feature fusion via the CMT mechanism, MemoCMT captures both phonetic and linguistic features 
from the audio and aligns this information with the contextualized text representations from BERT. This results 
in meaningful and robust feature representations for MER. Our analysis discovered that CMT with MIN is the 

Fig. 1. Overview of the proposed (MemoCMT) architecture with the updated CMT that leverages cross-
attention mechanism to effectively fuse audio and textual representations extracted by the SER and TER 
modules, respectively, with a focus on emotional cues.
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most efficient design to perform better than other sequential designs (See Section: “Experimental setup and 
results”). Furthermore, emotion embedding plots have been utilized to visually represent the overlap of various 
emotion categories based on the t-SNE29, providing a quantitative analysis of model training (See Section: 
“Experimental setup and results”). The key points of our MemoCMT are the following:

• We propose a novel fusion module called CMT. Using a cross-attention module, this module aims to extract 
key emotional features from audio and text cues. The CMT creates a better insight feature that enables the 
classifier to have more important information for the predicted class.

• To further improve the extracted emotional features, we experiment with various aggregation techniques 
before passing the fusion feature to the classifier. This method helps choose the suitable reduction feature 
dimensions created by a cross-attention mechanism for the classifier.

• Our system demonstrates exceptional performance, achieving baseline results on the test sets of three widely 
recognized benchmark datasets: IEMOCAP, ESD, and MELD. This superior performance is consistently ob-
served across all evaluation metrics, underscoring the robustness and reliability of our approach.The rest of 
the article is organized as follows: The second section represents the recent literature about multimodal SER, 
and the third section illustrates the main framework and related text and audio encoder. The fourth section 
reports the corpora information and qualitative and quantitative results of the system with model configura-
tion. Finally, the article concludes in the fifth section with possible future directions.

Recent literature
Multimodal approaches have shown great promise in SER by incorporating information from various sources 
like speech, video, and text. However, a significant challenge remains: effectively combining these modalities5. 
As pointed out in30, there are key differences between modalities. Some modalities might be more independent 
than others, and the information they convey might be synchronized or asynchronous. This makes seamless 
integration a critical research area in multimodal SER. Traditionally, researchers have focused on identifying the 
optimal stage within the model architecture to combine features from different modalities30.

The four primary types of fusion techniques31 are fusions based on components/features (often called 
early fusions), fusions based on decisions (late fusions), fusions based on models, and hybrid fusions. Feature-
level fusion encompasses amalgamating features from diverse modalities including visual, text, and audio, 
consolidating them into comprehensive feature vectors. These vectors are subsequently leveraged for analytical 
purposes. This approach leverages low-level data features early, including a more extensive range of information 
from the original data32. Researchers have developed the Parallel Inception Convolution Neural Network to 
improve deep learning methods in pursuit of better methods. Using the concatenation method, features of 
varying scales are combined to form a standard convolution neural network by simultaneously processing sigma 
signals from six channels33. Numerous researchers have effectively integrated audio, video, and text features 
by condensing them and channeling them into a Transformer Encoder34. Nevertheless, feature-level fusion 
comes with certain limitations. Various modalities are often represented in the features obtained using this 
technique. They may exhibit disparities in numerous aspects, necessitating the conversion of these features into a 
uniform format before fusion35. A high-dimensional feature set may also suffer from data sparsity issues because 
this fusion method lacks interaction of intra-modality information36. This can lead to redundancy in modal 
information and potential overfitting of the data. In summary, while feature-level fusion offers advantages, it is 
not exempt from limitations.

To overcome the limitations associated with feature-level fusion, decision-level fusion integrates unimodal 
decision values through ensemble learning techniques such as tensor fusion17,37, or multiplication layer fusion31. 
Each modality’s features are individually analyzed and classified in this approach, and the resulting decisions 
are combined into decision vectors to yield the final output. Decision-level fusion offers several advantages, 
simplifying the decision-making process across different modalities compared to feature-level fusion, as multiple 
modalities often share the same data format31. Also, it lets each modality use its best classifier or model for 
learning features38. However, utilizing distinct classifiers or models in the analysis task introduces complexity 
and increases the time requirements for the learning process during the decision-level fusion phase. Additionally, 
this approach must address the challenge of capturing the subtleties of modal dynamics without considering the 
interaction and correlation between different modalities.

Unlike many existing methods that rely on a single fusion strategy or model, our approach leverages a multi-
level fusion strategy to capture the intricate interplay of information within and between different modalities 
(speech and text, in this case). These results are superior to those of baseline methods. Our system focuses on 
recognizing emotions primarily from speech and text data. The novelty lies in combining both feature-level 
and model-level fusion techniques. In addition, we are introducing a groundbreaking Model-Fusion module 
meticulously crafted to enable seamless interactions between modalities and within each modality itself. This 
allows us to employ a unified model that captures the subtle and dynamic relationships between speech and text 
features, ultimately leading to more accurate emotion recognition.

Development of MemoCMT
The architecture of the designed MER system is depicted in Fig. 1, seamlessly integrating both audio and text 
modalities to successfully discern emotions. Data pre-processing, feature extraction, modalities fusion, and 
emotion classification are involved in this section. The effectiveness of MER depends on factors such as data 
quality, feature selection, and the classification method utilized to ensure its resilience. In the leading architecture, 
we have SER and TER modules to extract the corresponding cues from each modality. The proposed system is 
designed to effectively capture and fuse audio and textual cues. Initially, a significant amount of audio and text 
data is employed from the public benchmark datasets and pre-processed for the relevant modules. The audio is 
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resampled at a sample rate of 16kHz, and the text is applied to a regular expression to remove redundant space 
and special characters. Following data pre-processing, the methodology adopts a modality-specific approach, 
using separate neural networks for audio and text data. These networks learn to extract and represent modality-
specific features.

The modality-specific networks, BERT and HuBERT, are jointly trained via a CMT in the next stage. HuBERT 
was initially derived from the BERT architecture, which focuses on extracting features from audio data. BERT 
is commonly utilized to extract textual features. The similarity between these architectures can potentially 
enhance feature representation for both audio and text, facilitating a more seamless alignment in the cross-
attention module during subsequent stages. This allows the model to learn the complementary information 
from audio and text modalities. The training process is fine-tuned to ensure optimal model performance. Cross-
validation techniques rigorously evaluate the model’s performance, considering weighted accuracy (W-Acc) and 
unweighted accuracy (UW-Acc) metrics. Further consideration is given to explainability to ensure the model 
can be interpreted and provides insights into its predictions. This can involve techniques like aggregation and 
contextualization mechanisms or visualization of the contributions of different input parts to the final prediction. 
Ultimately, the MER system improves its accuracy and robustness by using BERT text-based features and 
HuBERT audio-based features. Further detailed explanations of each module are illustrated in the subsequent 
sections.

Module 1 (SER)
During this phase, the system inputs an audio waveform to extract important acoustic features. To effectively 
analyze speech data for emotions, we utilize HuBERT27, which represents audio features using a self-attention 
mechanism and masked prediction of hidden units technique. The original HuBERT architecture has been frozen 
during the training phase to keep the useful features learned from the LibriSpeech39 corpus. The LibriSpeech 
corpus consists of 1000 hours of speech sampled at 16kHz, sourced from various audiobooks. This makes 
HuBERT well-suited for capturing the subtle emotional nuances within the audio signal.

To begin with, HuBERT breaks down the sound waves into smaller segments known as tokens using a CNN 
encoder. This step generates numerous tokens, each with a feature-length of 768. By representing the audio 
waveform as tokens, HuBERT can now utilize a transformer architecture to understand the audio features. The 
transformer architecture of HuBERT is built upon the BERT architecture but with an extra step of masking 
tokens before feeding them into BERT. The strategic utilization of masked tokens in HuBERT undeniably plays a 
crucial and indispensable role in the overall efficacy of the training process. These tokens are randomly selected 
and hidden from the model during training. Using masked tokens allows us to leverage the surrounding context 
more effectively in HuBERT learns to understand the audio better and can generalize its knowledge to unseen 
data.

Module 2 (TER)
The training of the BERT model, as described in28, involves providing the model with the text transcriptions 
of the spoken utterances, which are initially utilized in the TER phase. BERT employs a 12-transformer block 
configuration with 12 attention heads and a pre-trained model featuring 768 hidden units. This configuration is 
employed to generate encoded hidden vectors ri for each token represented by the ei embedding, where i refers 
to the index of the input token. Furthermore, unique tokens c1 and c2 are introduced to serve as identifiers for a 
classifier and separator, which play a role in a specific task.

For each data point represented by i, with its corresponding time steps denoted as t, the input tokens are 
obtained through the BERT module, resulting in a text feature vector. This task-specific BERT exhibits its 
remarkable capability to provide deep bidirectional representations by randomly masking specific input tokens 
and then predicting these masked tokens based on the context of the remaining tokens. This methodology allows 
BERT to acquire a profound understanding of the contextual relationships between words within a sentence, 
thereby enabling it to capture the semantic meaning of the text more accurately than traditional language models 
and methods. This BERT model must be trained to enhance the system’s ability to recognize speech emotions.

Module 3 (CMT)
CMT is a powerful module that leverages the cross-attention architecture19 to fuse speech and text cues effectively. 
Figure 1 illustrates the architecture of CMT. In CMT, cross-attention is achieved through a mechanism called 
multi-head attention36. This mechanism takes a set of query-key pairs and a value as input and produces an 
output, where the query, key, value, and output are all vectors. Let denotes vs ∈ Rn×d and vt ∈ Rm×d as the 
feature vectors created by SER and TER, respectively, where n indicate the speech cues, m indicate the text cues 
and d is the feature dimensional of output vector, Qs, Ks, Vs indicated the query, key, and value of speech 
embedding, while Qt, Kt, Vt correspond to the query, key, and value of text embedding. The CMT formula can 
be defined as follows:

 CMToutput = Concat(Cross Attention(Qs, Kt, Vt), Cross Attention(Qt, Ks, Vs)) (1)

where Qs = Ks = Vs = vs and Qt = Kt = Vt = vt. The cross-attention module19 in this equation helps 
enable CMT seamless integration and extraction of information from speech and text data sources. The formula 
of cross-attention is as follows:
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where i, j are the number of vector features, Wq, Wk, Wv, W, b are trainable parameters. From Eqs. (1) and  (2), 
the final output of CMT is as follow:
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where LayerNorm40 is a technique to normalize the vector based on its values. The formula does not include the 
multi-head process for simplification, where the cross-attention is split into multiple smaller heads to compute. 
In reality, the multi-head process enhances the model’s ability to capture vario0us aspects of the input data. The 
outputs of these heads are combined to create the final output of the cross-attention mechanism.

The CMT generates attention fusion feature vectors vcmt ∈ R(m+n)×d where (m + n) is the number of 
vectors. The vcmt represents the information of speech and text, which was captured using HuBERT and BERT, 
respectively. Before passing this vcmt to the classifier, we need to reduce the number of vectors in vcmt into one 
unique vector. A simple method is to flatten the vcmt to create a unique vector. However, this process creates 
many units in the linear layer, leading to high computation and bottlenecks. To avoid this issue, we experiment 
with four aggregation methods to reduce the vcmt vectors: CLS method28, MEAN, MAX, and MIN. CLS selects 
the first token as a compact summary for classification. MEAN calculates the average value along the token axis, 
reducing the feature vector dimensions. MAX determines the highest value, while MIN captures the lowest value 
along the token axis. These aggregation methods produce a smaller vcmt ∈ Rd compared to the flattened fusion 
feature, addressing the computational challenges and enabling efficient classification.

Experimental setup and results
This section delves into the data used, the processing steps involved, the achieved results, and insights gained 
from MemoCMT. To assess the model’s performance, we employed three commonly used datasets for multimodal 
emotion recognition research: IEMOCAP41, ESD42,43, and MELD44. All these datasets consist of text and audio 
recordings simulating realistic conversations between actors and sharing a consistent labeling structure for 
emotions. We conducted a comprehensive evaluation, analyzing the performance of each model component. 
This analysis revealed the most effective configurations for emotion recognition. The following paragraph briefly 
describes the IEMOCAP, ESD, and MELD datasets.

Datasets and training strategy
IEMOCAP Interactive Emotional Dyadic Motion Capture  (IEMOCAP)41 dataset is used for the proposed 
system evaluation (training and testing) that contains voice utterances and corresponding text transcriptions. To 
compare the system with existing techniques that used the IEMOCAP corpus with four main emotions: anger, 
sadness, happiness, and neutral. It should be noted that both improvised and scripted utterances were utilized in 
this study, including 1103 angry, 1708 neutral, 1084 sad, and 1363 happy (happy and excited) utterances. Because 
these four emotions are vastly used in literature for systems evaluations, the excited and happy emotions have 
been combined due to the same feeling based on Plutchik’s wheel of emotions.

ESD Emotional Speech Database (ESD)42,43 comprises over 29 hours of speech data from 10 native English 
speakers and 10 native Mandarin speakers. It consists of 350 parallel utterances that cover five emotion categories: 
neutral, happiness, anger, sadness, and surprise. The data was meticulously recorded in a controlled acoustic 
environment, ensuring accuracy and reliability. An important characteristic of the ESD dataset is its balanced 
distribution of samples across each emotion class and language. This balanced distribution helps reduce the 
impact of an imbalanced dataset during training, providing valuable insights into the MemoCMT.

MELD Multimodal EmotionLines Dataset (MELD)44 is an enriched dataset that builds upon the 
EmotionLines45 dataset by incorporating audio and visual modalities in addition to text. While preserving the 
dialogue instances from EmotionLines, MELD introduces enhanced features. With over 1400 dialogues and 
13,000 utterances sourced from the Friends TV series, each utterance within a dialogue is categorized with one 
of seven emotions: anger, disgust, sadness, joy, neutral, surprise, and fear. It is important to note that this dataset 
originally included three subsets: train, dev, and test. As a result, we used the train set for model development, 
while the dev and test sets were used to evaluate validation and testing performance.

Model Configuration The model is trained using a sophisticated optimization algorithm called Adam. This 
optimizer adjusts the model’s internal parameters to minimize errors during training. The learning rate, set 
at 0.0001, controls how drastically these adjustments are made, ensuring precise updates. Additionally, betas 
(β1 of 0.9, β2 of 0.999) help Adam control the decay rates of the moving averages for the gradient and its 
square, respectively. To enhance the model’s convergence, we implement a step learning rate reduction strategy 
by decreasing the current learning rate by a factor of 0.1 after every 30 epochs, and the model is stopped after 100 
cycles (epochs) when it performs best on a separate validation dataset. Additionally, our experiments utilized 
k=5 for k-fold cross-validation across all datasets. This choice represents a balance between computational 
efficiency and robust estimation of model performance. Each dataset was divided into five equal subsets, where 
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four folds were used for training and one for testing. This process was repeated five times, with each fold serving 
the test set once, ensuring that the model was evaluated on all data points This approach ensures the model 
captures the most significant relationships within the data while avoiding memorization of the training data 
itself. MemoCMT is trained with a batch size of 1. While training with a batch size of 1 can potentially lead the 
model to get stuck in local minima, it offers two significant advantages. Firstly, it eliminates the need for padding 
or trimming audio or text lengths for batching, thereby reducing redundant data. Secondly, it enhances the 
model’s robustness when exposed to varying length inputs during training.

Performance evaluation metrics
W-Acc and UA-Acc are two evaluation metrics employed to assess the results. W-Acc accuracy is calculated 
by dividing the number of correct predictions by the total number of samples, which treats all classes equally. 
However, in the case of IEMOCAP, where there is an imbalance across the emotion classes, UA-Acc is also 
computed. UA-Acc assign weights to each class based on the number of samples present in that specific class, 
providing a more comprehensive evaluation of accuracy that accounts for the varying distribution of samples 
across different emotions. The formula of W-Acc and UA-Acc can be defined as follow:

 
W − Acc = T P + T N

T P + F P + T N + F N
 (4)

 
UA − Acc = 1

2

(
T P

T P + F N
+ T N

T N + F P

)
 (5)

The number of instances correctly predicted as positive by the model is TP, while the number of instances 
incorrectly predicted as positive is FP. As a result of the model correctly predicting negative instances as negative, 
TN is the number of negative instances the model correctly predicted as negative. As a result of the model 
incorrectly predicting positive instances as negative, FN is the number of actual positive instances.

Impact of multimodality
Due to the lack of context in the transcripts of the ESD dataset, it cannot benefit from the pre-trained BERT 
model. As a result, we only use four categorical emotions (anger, happiness, neutral, and sadness) from the 
IEMOCAP dataset for this analysis. Table 1 shows the performances of the unimodal branches of our proposed 
MER system (SER for audio and TER for text) as well as the multimodal model. We find that using feature 
fusion of multimodal data significantly improves performance. We achieve exceptional accuracy across all 
emotion representations using model-level fusion with the primary task (SER). Notably, the multimodal model 
achieves the highest performance with W-Acc and UA-Acc of 79.25% and 78.92%, respectively, with 8.25-12.69% 
and 7.80%-13.58% notable improvement compared to the others. The MER system benefits from the abstract 
and general characteristics of the speaker by using pre-trained models for SER and TER. These models utilize 
knowledge gained from relevant datasets to generate useful features that help the MER accurately predict 
emotions. The SER model captures details about the phonetic and linguistic characteristics of the speech, while 
the TER model focuses on the context and meaning conveyed by the speaker. By learning emotion and speaker 
characteristics at the same time, we can achieve better results in identifying high-level feature demonstrations, 
enhancing the SER model’s efficiency, as mentioned in Table 1.

Impact of feature fusion
To validate the effectiveness and robustness of MemoCMT, we assessed the performance of CMT with different 
fusion mechanisms. Table 2 shows the results of MemoCMT using CMT with different fusion mechanisms on 
both the IEMOCAP and ESD datasets. For IEMOCAP, the proposed method using CMT with CLS achieves the 
lowest performance, while that with MIN achieves the highest. Specifically, MemoCMT using CMT with MIN 
obtains a W-Acc of 81.85% and a UA-Acc of 81.33%. This trend is observed similarly in the ESD dataset. Notably, 
MemoCMT using CMT with MIN achieves the highest performance with a W-Acc and UA-Acc of 91.84% 
and 91.93%, respectively. Regarding the IEMOCAP dataset, the model using CMT with MIN gains notable 
improvements of 1.62–2.60% and 1.21–2.41% in W-Acc and UA-Acc, respectively, compared to the others. In 
terms of the ESD dataset, it gains improvements of 7.72% in W-Acc and 7.72% in UA-Acc compared to using 
CMT with CLS. Moreover, these results demonstrate that using the MIN aggregation approach achieves the best 
performance, indicating that it can be considered to replace the common approaches like CLS and MEAN. These 
findings suggest that using CMT with MIN might reduce the gap between features and modalities, leading to 
improved performance.

Modality W-Acc (%) UA-Acc (%)

Text 71.10 71.12

Audio 66.56 65.34

Text + Audioa 79.25 78.92

Table 1. Impact of modality in our designed MER for the IEMOCAP corpus. a This experiment employed 
CMT with a class token to ensure comparability with the other unimodal models
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Moreover, to delve deeper into the insights of the CMT, we employ t-SNE29 to visualize the learned feature 
representations of different fusion mechanisms based on the ESD dataset (Fig. 2). We observe that the learned 
feature representations using CMT with CLS (Fig. 2a) and MEAN (Fig. 2b) show significant overlap between 
the five emotions, while those using MIN (Fig. 2c) and MAX (Fig. 2d) show clearer separation. Interestingly, the 
learned feature representations in MIN (Fig. 2c) demonstrate significant discriminative ability. These findings 
are consistent with those presented in Table 2, indicating that the trained model can effectively and robustly 
classify the five emotional states.

Results and evaluation
The IEMOCAP and ESD datasets were analyzed, and models were trained and tested, with results compared. 
The confusion matrices depicted in Fig. 3 illustrate the confusion between actual and predicted labels. Figure3a 
illustrate the confusion matrix of MemoCMT using CMT with MIN on the IEMOCAP dataset. In this case, 
MemoCMT performs the highest in recognizing the angry emotion and the lowest in recognizing the neutral 
emotion. On the ESD dataset (Fig. 3b), MemoCMT shows the lowest performance in recognizing happiness, 
while it exceeds 90% accuracy in recognizing the other four emotional states. Interestingly, MemoCMT secured 
better results in recognizing the neutral emotion on the ESD data, with an accuracy of 97.24%.

Moreover, we have plotted the corresponding receiver operating characteristic (ROC) curves and calculated 
the area under the curve (AUC) of MemoCMT on both the IEMOCAP and ESD datasets (Fig. 4). Figure 4a 
illustrates the curves for recognizing four emotional states on the IEMOCAP dataset. Notably, it achieves AUC 
values of 0.9738, 0.9426, 0.9611, and 0.9043 for anger, happiness, sadness, and neutral, respectively. Interestingly, 
MemoCMT achieves higher performance in terms of AUC on the ESD dataset (Fig. 4b), even though the number 
of emotions is greater than on the IEMOCAP dataset. It exceeds an AUC of approximately 0.9900 for all five 
emotions.

Comparison and discussion
The performance of our designed MER system is evaluated against existing methods, as presented in Table 3. 
We established a multimodal baseline using an end-to-end pipeline incorporating CMT for the SER channel and 
TER channel using audio-textual cues. Results in Table 3 demonstrate that our proposed method achieves the 
highest performance in terms of UW-Acc and W-Acc on the IEMOCAP dataset. Notably, MemoCMT obtains 
the UW-Acc and W-Acc values of 81.33% and 81.85%, respectively, which are 5.70–17.83% and 6.55–23.05% 
higher than those of the other studies. Furthermore, comprehensive details and comparison of the designed 
model and the ablation study, which utilizes an AI-based architecture for emotion identification, are provided 
in Tables 1, 2, 3, 4. We have compared several approaches with ours and demonstrated superior accuracy on the 
IEMOCAP and ESD corpora. Our proposed model exhibits excellent performance, achieving a high recognition 
rate surpassing existing methods. This notable improvement underscores the robustness and significance of 
our approach in the field of MER that attributed to several factors: (a) The effective integration of speech and 
text modalities allows for more comprehensive emotion analysis, and (b) The use of advanced architectures like 
aggregated module and BERT capture complex audio and textual data patterns.

A cross-validation technique has been employed extensively to achieve a robust speaker-independent 
assessment. Using this method, we ensure that the speakers in each fold are different, thereby mitigating 
potential biases and enhancing the generalization of our results. Specifically, our speech evaluation procedure 
was structured as follows: (a) The dataset was divided into multiple folds, each containing unique speakers 
not present in the other folds; (b) During this stage, the decoder underwent training to recognize emotions 
from input samples and repeated for each fold, with the model learning to recognize emotional patterns across 
various speakers. (c) The trained classifier must be used to extract feature vectors from the test utterances. By 
using unseen data in this evaluation phase, we gain a realistic assessment of how well the model can recognize 
emotions in real-world scenarios. Adopting this rigorous cross-validation methodology ensures that speaker-
dependent factors do not artificially inflate our model’s performance. This approach provides a more accurate 
representation of how the system would perform in real-world scenarios with unknown speakers.

Our method improves emotion recognition using multiple data sources, including speech and text. Adding 
audio data enhances accuracy, and combining speech and text data yields superior results. We also identified the 
optimal threshold for additional data and highlighted the importance of calibrating the loss function weights. 
Our approach overcomes data limitations and offers insights into data augmentation strategies and model 
optimization techniques.

Our model addresses the challenge of partial emotion data accessibility by leveraging multiple sources. This 
significantly contributes to developing a robust mechanism for emotion recognition using speech and text data. 

Fusion mechanism

IEMOCAP ESD

W-Acc (%) UA-Acc (%) W-Acc (%) UA-Acc (%)

CMT + CLS 79.25 78.92 84.12 84.21

CMT + MEAN 79.47 79.12 90.66 90.71

CMT + MIN 81.85 81.33 91.84 91.93

CMT + MAX 80.23 80.12 91.78 91.86

Table 2. Impact of fusion mechanisms in MemoCMT on the IEMOCAP and ESD corpora, respectively. CLS, 
Class token; MEAN, Mean aggregation; MIN, Min aggregation; MAX, Max aggregation.
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These findings have significant implications for emotion recognition, highlighting the importance of multimodal 
approaches in capturing the full spectrum of emotional expressions, providing insights into effective data 
augmentation strategies, and potentially reducing the need for large, manually labeled datasets. They underscore 
the need to carefully consider model architecture and training procedures, particularly loss function design. 
Furthermore, our method’s ability to overcome partial data accessibility issues suggests its potential applicability 
in scenarios where complete emotional data may not be available, such as in real-time emotion recognition 
systems or when dealing with noisy or incomplete datasets. Future work could explore the generalizability of 
these findings to other datasets and emotion recognition tasks and investigate the potential for incorporating 
additional modalities (e.g., visual cues) to further enhance the robustness and accuracy of emotion recognition 
systems.

Table 4 compares the proposed MER model’s performance on the ESD dataset to baseline methods. The table 
presents different methods, each associated with its architectural features and the corresponding UW-Acc and/
or W-Acc in percentage. Using a combination of CMT with MIN, the proposed MER model achieves a UW-
Acc of 91.93%, outperforming the other methods listed. Our proposed method gains notable improvements of 
1.46–3.43% and 1.38–3.34% in UW-Acc and W-Acc, respectively, compared to the other studies. This table serves 
as a valuable reference for researchers and practitioners in the SER field, demonstrating the proposed model’s 

Fig. 2. t-SNE visualizations of MemoCMT on the ESD dataset with five emotions (anger, happiness, neutral, 
sadness, and surprise) using different fusion mechanisms, such as CMT with CLS (a), CMT with MEAN (b), 
CMT with MIN (c), and CMT with MAX (d).
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effectiveness in recognizing speech emotions in the ESD dataset and showcasing its superiority over existing 
state-of-the-art approaches.

Case study
Moreover, to validate the effectiveness and robustness of our proposed approach, we assess the performance of 
MemoCMT on the MELD dataset as a case study and compare it with that of the previous study51 (Table 5 and 
Fig. 5). It should be noted that we use the same performance metrics, including accuracy (Acc), F1-score (F1), 
precision (Prec), and recall (Rec), reported in the previous study51 to make a fair comparison.

Table 5 shows the performance of MemoCMT on the MELD dataset with both validation and testing phases. 
It can be seen that the performance varies between different fusion mechanisms. Notably, the proposed method 
using CMT with MEAN achieves the highest performance on the validation phase in terms of Acc, with the Acc, 

Fig. 4. AUC-ROC curves of MemoCMT on both the IEMOCAP dataset (a) with four emotions and the ESD 
dataset (b), respectively.

 

Fig. 3. Confusion matrices of MemoCMT on both the IEMOCAP dataset (a) with four emotions and the ESD 
dataset (b), respectively.
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F1, Prec, and Rec values of 60.83%, 57.71%, 58.18%, and 60.83%, respectively. However, the proposed method 
using CMT with MIN obtains the highest performance in terms of F1, with the Acc, F1, Prec, and Rec values of 
60.38%, 57.99%, 58.29%, and 60.38%, respectively, demonstrating the best model among four different fusion 
mechanisms. To validate the transferability of our proposed method, we also evaluate MemoCMT on the test 
dataset. Interestingly, the proposed method achieves a similar or even better performance than that on the 
validation dataset. Importantly, the model using CMT with MIN again obtains the highest performance, with 
the Acc, F1, Prec, and Rec values of 64.18%, 62.52%, 63.82%, and 64.18%, respectively.

Furthermore, Fig.  5 shows the comparison between MemoCMT and the previous study51 on the MELD 
testing dataset. It can be easily observed that our proposed method with different variants achieves better 
performance in all metrics compared to that of the previous study. Notably, the model with CMT and MIN 
achieves notable improvements of 6.18-33.18% in Acc, 7.82–36.22% in F1, 5.32-39.52% in Prec, and 6.18–33.18% 
in Rec, respectively, compared to all models in the previous study. These results demonstrate that our proposed 
method is more effective and robust when applied to the MELD dataset, as evidenced by the better performance 
on four distinct fusion mechanisms.

Conclusion
In this research, we developed MemoCMT, an innovative MER system to identify emotions from speech signals 
and text transcripts. MemoCMT notably leverages the feature representations extracted by HuBERT and BERT 
for speech and text inputs via a novel CMT strategy. MemoCMT outperformed most current SER techniques 
on the IEMOCAP and ESD datasets. Through ablation analysis, it was proven that using multimodality fusion 
outperformed unimodality. Additionally, using a novel feature fusion strategy resulted in different performance 
levels. Importantly, MemoCMT using CMT with MIN achieved the highest performance on both the IEMOCAP 
and ESD datasets, with UW-Acc and W-Acc of 81.33% and 91.93%, and 81.85% and 91.84%, respectively. This 

Fusion mechanism

Validation Testing

Acc F1 Prec Rec Acc F1 Prec Rec

CMT + CLS 59.66 55.81 58.41 59.66 61.11 58.40 60.32 61.11

CMT + MAX 60.74 57.05 58.58 60.74 62.95 59.82 60.75 62.95

CMT + MEAN 60.83 57.71 58.18 60.83 62.61 60.14 61.01 62.61

CMT + MIN 60.38 57.99 58.29 60.38 64.18 62.52 63.82 64.18

Table 5. Performance of the proposed method on the additional MELD dataset.

 

Method Year Modality UW-Acc% W-Acc%

Zhou et al. 43 2022 Audio 89.00 –

Yang et al. 49 2024 Audio 88.50 88.50

Pham et al. 50 2023 Audio + Text 90.47a 90.46a

Ours 2024 Audio + Text 91.93 91.84

Table 4. Comparitive analysis of our model with a baseline on ESD corpus. aThis study employed only four 
emotions: anger, happiness, neutral, and sadness.

 

Methods Year Modality UW-Acc% W-Acc%

Zhang et al.17 2021 Audio – 61.80

Khan et al.6 2023 Audio – 72.75

Mirsamadi et al.20 2018 Audio 63.50 58.80

Chen et al 13 2022 Audio + Text 63.80 –

Tarant et al.15 2020 Audio 65.40 –

Zhang et al.3 2020 Audio + Text 69.70 68.60

Zhang et al.3 2020 Audio + Text 68.70 –

Liu et al.11 2023 Audio + Text 69.74 –

Kumar et al.46 2021 Audio + Text 75.00 71.70

Chen et al.47 2023 Audio + Text 74.30 75.30

Wang et al.48 2023 Audio + Text 75.08 72.31

Naderi et al.19 2023 Audio 75.63 74.16

Ours 2024 Audio + Text 81.33 81.85

Table 3. Performance comparison of our model with baselines on the IEMOCAP corpus.
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approach achieved the highest performance on the additional MELD dataset, indicating a need for future studies 
to explore various aggregation techniques. Such techniques can enhance performance assessment in multi-
modal analyses using pre-trained models like BERT and HuBERT. Moreover, we conducted t-SNE visualizations 
to interpret the effectiveness and robustness of the proposed method.

Although MemoCMT is proficient at capturing information from multiple modalities, it has some limitations 
that must be addressed. Firstly, MemoCMT relies on the transformer architecture, which requires high 
computational resources and is challenging to implement on constrained mobile or IoT devices. Secondly, a 
drawback of MemoCMT is that it requires full modality inputs to be present for predicting emotions, whereas, 
in real-world scenarios, real-time emotion prediction may necessitate the ability to predict emotions without 
knowing the maximum length of the input modality or only one of the modality inputs available. In future 
research, we aim to enhance MemoCMT by reducing its complexity by integrating advanced algorithms and 
tackling the real-time application limitation by exploring techniques like window slicing and length limitation. 
Moreover, we intend to add new modalities, such as videos and images, and strive to make the system more 
intelligent and valuable for real-time industrial applications.

Data availibility
The IEMOCAP dataset used in this study is publicly available for research purposes upon request at  h t t p s : / / s a i 
l . u s c . e d u / i e m o c a p /     . The ESD dataset used in this study is publicly available for research purposes upon request 
at https://hltsingapore.github.io/ESD/. Please note that this study employed only the English subset of the ESD 
dataset to develop and evaluate MemoCMT. The MELD dataset used in this study is publicly available for re-
search purposes upon request at https://affective-meld.github.io/.

Code availibility
The implementation details of MemoCMT are publicly available at https://github.com/tpnam0901/MemoCMT/ 
for reproducibility purposes.

Received: 26 June 2024; Accepted: 4 February 2025

Fig. 5. Performance comparison between MemoCMT and the previous study51 on the same MELD testing 
dataset. (* denotes the results collected from the previous study51).
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