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Abstract

20-O-methylation (2-OM or Nm) is a widespread RNA modification observed in various RNA

types like tRNA, mRNA, rRNA, miRNA, piRNA, and snRNA, which plays a crucial role in

several biological functional mechanisms and innate immunity. To comprehend its modifica-

tion mechanisms and potential epigenetic regulation, it is necessary to accurately identify 2-

OM sites. However, biological experiments can be tedious, time-consuming, and expensive.

Furthermore, currently available computational methods face challenges due to inadequate

datasets and limited classification capabilities. To address these challenges, we proposed

Meta-2OM, a cutting-edge predictor that can accurately identify 2-OM sites in human RNA.

In brief, we applied a meta-learning approach that considered eight conventional machine

learning algorithms, including tree-based classifiers and decision boundary-based classifi-

ers, and eighteen different feature encoding algorithms that cover physicochemical, compo-

sitional, position-specific and natural language processing information. The predicted

probabilities of 2-OM sites from the baseline models are then combined and trained using

logistic regression to generate the final prediction. Consequently, Meta-2OM achieved

excellent performance in both 5-fold cross-validation training and independent testing, out-

performing all existing state-of-the-art methods. Specifically, on the independent test set,

Meta-2OM achieved an overall accuracy of 0.870, sensitivity of 0.836, specificity of 0.904,

and Matthew’s correlation coefficient of 0.743. To facilitate its use, a user-friendly web

server and standalone program have been developed and freely available at http://

kurata35.bio.kyutech.ac.jp/Meta-2OM and https://github.com/kuratahiroyuki/Meta-2OM.

Introduction

Post-transcriptional chemical modification of ribonucleic acid (RNA) plays significant func-

tions in cellular regulation and biological information in all three phylogenetic domains (i.e.

eukaryotes, bacteria, and archaea) of the life [1, 2]. Among various RNA alterations, nucleotide

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0305406 June 26, 2024 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Harun-Or-Roshid M., Pham NT,

Manavalan B, Kurata H (2024) Meta-2OM: A multi-

classifier meta-model for the accurate prediction of

RNA 20-O-methylation sites in human RNA. PLoS

ONE 19(6): e0305406. https://doi.org/10.1371/

journal.pone.0305406

Editor: Shahid Akbar, Abdul Wali Khan University

Mardan, PAKISTAN

Received: January 17, 2024

Accepted: May 29, 2024

Published: June 26, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0305406

Copyright: © 2024 Harun-Or-Roshid et al. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

https://orcid.org/0009-0000-3324-793X
https://orcid.org/0000-0002-8086-6722
https://orcid.org/0000-0003-4254-2214
http://kurata35.bio.kyutech.ac.jp/Meta-2OM
http://kurata35.bio.kyutech.ac.jp/Meta-2OM
https://github.com/kuratahiroyuki/Meta-2OM
https://doi.org/10.1371/journal.pone.0305406
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0305406&domain=pdf&date_stamp=2024-06-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0305406&domain=pdf&date_stamp=2024-06-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0305406&domain=pdf&date_stamp=2024-06-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0305406&domain=pdf&date_stamp=2024-06-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0305406&domain=pdf&date_stamp=2024-06-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0305406&domain=pdf&date_stamp=2024-06-26
https://doi.org/10.1371/journal.pone.0305406
https://doi.org/10.1371/journal.pone.0305406
https://doi.org/10.1371/journal.pone.0305406
http://creativecommons.org/licenses/by/4.0/


modification stands out for its evolutionarily conserved nature within the epitranscriptome

[3]. With the advances in genomics and molecular biology, approximately 300 RNA modifica-

tion types have been identified, playing a crucial role in regulating transcriptional processes

[3–5]. One prevalent modification is 2’-O-methylation (2-OM), where a methyl group (-CH3)

is added to the 20 hydroxyl (-OH) of the ribose moiety of a nucleoside. It is also known as the

Nm modification of RNA where ‘N’ stands for any nucleotide. 2-OM nucleotides are predomi-

nantly found in ribosomal RNAs (rRNAs), small nuclear/nucleolar RNAs (snRNAs), transfer

RNAs (tRNAs), piwi-interacting RNAs (piRNAs), microRNAs (miRNAs), and messenger

RNAs (mRNAs) [6–12]. The 2-OM modification alters the RNA activities in different, epige-

netic ways such as translation regulation and secondary structure stability, and provides a

molecular signature for the discrimination of self and non-self mRNAs [13–16]. Furthermore,

2-OM links to various human diseases [3], including Prader–Willi syndrome, asthma, Alzhei-

mer’s disease [13], and breast cancer [17]. Interestingly, 2-OM is also being investigated as a

potential target for drugs that could prevent the early innate immune evasion of the SARS-

Coronavirus 2 viral RNA [18, 19]. In light of these, accurate detection of 2-OM sites is essential

for developing a deeper understanding of their functional implications.

Several experimental methods have been developed for identifying 2-OM sites, both before

and after the era of high-throughput sequencing technologies. Some studies have proposed

identification based on molecular approaches, with the goal of precisely identifying Nm sites

in the ncRNA [19]. Krogh et al. [20], Erales et al. [21], Sharma et al. [22], and Zhou et al. [23]

proposed several in-vitro techniques to detect the 2-OM sites, but these techniques were only

partially effective and were specifically sensitive to p53. RibOxi-seq [24] is another in-vitro
method that can be used to discriminate 2-OM modifications in rRNA. Dai et al. [12] pro-

posed a high-throughput experimental method named Nm-seq, which is used to detect Nm-

modification sites in mRNA. Experimental methods can detect 2-OM sites in the transcrip-

tome, but they are time-consuming, labor-exhaustive, and expensive. Computational methods,

on the other hand, are efficient and effective, and they play an important role in many areas of

bioinformatics. For example, in silico techniques are being used rapidly in research on disease-

gene interactions [25, 26], protein structure prediction [27], peptide therapeutic function, gene

editing experiments [28], meaningful pattern detection [29], and drug repurposing [30, 31].

Previously, researchers have been proposed a few computational models for predicting the

2-OM sites based on single machine learning (ML) and deep learning (DL) approaches [32–

39].

A summary of these methods is provided in Table 1. Chen et al. [39] developed an support

vector machine (SVM)-based prediction model trained on the benchmark dataset of 147 posi-

tive and 147 negative samples of Am modifications. Huang et al.’s [34], iRNA-PseKNC

(2methyl) [35], iRNA-2OM [37], and NmRF [32] were also built using the same dataset as pro-

posed by Chen et al. Although these methods achieved high prediction performance, they did

not generalize well to other types of 2-OM (Gm, Cm, Um) sites. Deep-2’-O-Me [38] is a con-

volutional neural Network (CNN) with word2vec feature encodings that achieved area under

the receiver operating characteristic curves (AUC) of 90% on an independent test for both bal-

anced and unbalanced datasets. NmSEER V2.0 [36] is an updated version of NmSEER [40]

that uses random forest (RF) with one-hot, position-specific nucleotide sequence profile

(PSNSP), and K-nucleotide frequencies (KNF) feature encoding to achieve an AUC of 86.2%

for predicting Nm sites. DeepOMe [33] is a CNN-bidirectional long short-term memory

(BLSTM) hybrid method that achieved an accuracy (ACC) of 0.956 and AUC of 0.998 on an

independent test dataset. NmRF [32] is an RF-based method trained on optimal mixed fea-

tures to identify 2-OM sites in multiple species. It achieved ACCs of 0.890 and 0.939 for

humans and yeast, respectively. The ML-oriented latest method, i2OM [41] is an SVM- and
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the eXtreme gradient boosting (XGB)-based method that can predict the four types of nucleo-

tide modification in 2-OM sites. It achieved AUCs of 0.920, 0.869, 0.933, and 0.936 for Am,

Um, Gm, and Cm, respectively, on an independent test dataset. The DL-based method

H2Opred [42] was designed to predict the 2-OM modification for human RNAs. The

H2Opred method was trained using both generic and nucleotide-specific datasets. Surpris-

ingly, the generic model outperformed the nucleotide-specific models, which achieved the

AUCs of 0.954, 0.949, 0.958, and 0.928 for Am, Cm, Gm, and Gm, respectively, on the inde-

pendent datasets.

Most previously published methods for predicting 2-OM sites are limited in scope, such as

only predicting 2-OM sites in a single type of RNA dataset (e.g., mRNA or rRNA), or a specific

type of nucleotide modification sites, which are built based on smaller training datasets. In this

study, we developed a more powerful integrated predictor Meta-2OM that predicts all 2-OM

sites (Am, Cm, Gm, Um) in human epitranscriptome sequencing data. Fig 1 illustrates the

overall framework of Meta-2OM, which is based on a meta-learning approach that explores

eight ML classifiers (RF, SVM, XGB, light gradient boosting machine (LGBM), Catboost clas-

sifier (CBC), Naïve Bayes (NB), K-nearest neighbor (KNN), Logistic regression (LR)) with 18

diverse RNA sequence-based feature encoding methods. Subsequently, the predicted probabil-

ities of 2-OM sites from multiple baseline models were concatenated and trained with LR to

generate the meta-classifier. This approach allows Meta-2OM to learn from the strengths and

weaknesses of each model, resulting in a more accurate and robust prediction. Meta-2OM was

evaluated on an independent test set and performed slightly better than the state-of-the-art

methods, demonstrating its effectiveness as the most effective predictor of 2-OM sites to date.

Materials and methods

Benchmark dataset construction

In this study, we utilized a benchmark dataset specifically designed for the development and

evaluation of predictive models for 2-OM RNA modification sites in humans (Homo sapiens)
RNA sequences. The dataset, originally constructed by Yang et al. [41] was derived from

sequence data from RMBase v2.0 [43] and experimental datasets from Nm-seq (GSE90164)

[12]. It comprised a total of 7,597 positive samples (2-OM or Nm sites) across various RNA

types, including tRNAs, rRNAs, scRNAs, snRNAs, snoRNAs, scaRNAs, lincRNAs, protein-

coding genes, and pseudogenes. Each sample was represented by a sequence of 41 nucleotide

Table 1. Summary of available methods to predict 2-OM sites.

Year Method Algorithm Feature techniques Sample sizea Testing method ACC Genomes

2023 H2Opred [42] CNN, Bi-GRU 19 encodings 6091/6091 5-fold CV and Independent test 0.858 0.910 Human

2023 i2OM [41] SVM, XGBoost K-mer, NCP, ANF 6091/6091 5-fold CV and Independent test 0.863 0.843 Human

2022 NmRF [32] RF mixed 147/147 10-fold CV and Independent test 0.891 0.939 Human, Yeast

2021 DeepOMe [33] CNN, BLSTM One-hot 3052 10-fold CV 0.956 Human

2020 Huang et al. [34] SVM - 147/147 10-fold CV 0.765 Human

2019 iRNA-PseKNC (2methyl) [35] CNN One-hot 147/147 5-fold CV 0.983 Human

NmSEER V2.0 [36] RF One-hot, PSDSP, KNF 1989/1989 5-fold CV 0.862 Human

2018 iRNA-2OM [37] SVM NCP, NC, PseKNC 147/147 5-fold CV 0.979 Human

Deep-2’-O-Me [38] CNN word2vec -/- Independent test AUC-0.900 Human

2016 Chen et al. [39] SVM NCP, NC 147/147 Jacknife CV 0.956 Human

aSample size: positive /negative dataset

https://doi.org/10.1371/journal.pone.0305406.t001
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base pairs (bp), centered around the modification site. To remove sequence redundancy, the

CD-HIT [44] was employed with a threshold of 0.80, yielding 6,091 positive samples. The

dataset also included 21,520 negative samples, representing non-2-OM or non-Nm sites. They

balanced the dataset to a 1:1 ratio of positive to negative samples to minimize training bias

associated with imbalanced datasets. As a result, they developed four modification-specific

(Am, Cm, Gm, Um) and generic (Nm) dataset, which were then divided into training and test-

ing sets. The statistical summary of these datasets is provided in Table 2.

Encoding and feature extraction strategy

Feature extraction methods are crucial for developing sequence-based ML methods to detect

not only RNA modification sites [45, 46], but also other function prediction problems. There-

fore, we explore 18 different feature encoding methods, which are briefly described below.

Dataset preparation
Previous article

Um Am

Gm Cm

Combined: 2-OM/Non-2-OM
Training: 4261/4261
Testing: 1830/1830

Feature extraction

ANF

CKSNAP

DNC

ENAC

EIIP

NCP

PseEIIP

TNC

RCKmer Kmer

CTD

NPS

NPPS

NCP-ND

PseKNC

binary BPB W2V

18 different feature encodings

Model construction and training

Meta-Classifier by LR
(Construction and validation)

Optimal prediction model 

SVM KNNNB

CBC

XGB

RFLGBM

LR

8 ML methods

Baseline
model 1

Baseline
model n

Baseline
model 144… …

Baseline model construction (18×8=144) 

Web-Server Performance analysis

Independent data

2-OM Non-2-OM

ACC

MCC

PRE

AUC

AUPRC

SEN

SPE

Meta-2OM

Fig 1. The development workflow of Meta-2OM. It consists of five major steps: (i) Data collection and preparation: collect and prepare 2-OM benchmark

datasets from databases and split them into the training and independent test datasets. (ii) Feature extraction: extracting features using 18 different encoding

methods. (iii) Model construction and training: constructing the baseline classifiers using eight different ML methods and meta-classifiers using LR for final

prediction. (iv) Performance analysis: analyze and compare the performance of the meta-classifier, and (v) Web server construction: constructing a user-

friendly web application.

https://doi.org/10.1371/journal.pone.0305406.g001

Table 2. Description of benchmark datasets.

Datasets (H. sapiens) Total sample Training Independent

Positive Negative Positive Negative

Nm (2-OM) 12,182 4,261 4,261 1,830 1,830

Am 3,110 1,088 1,088 467 467

Cm 3,274 1,138 1,138 498 498

Gm 2,620 916 916 394 394

Um 3,196 1,118 1,118 480 480

https://doi.org/10.1371/journal.pone.0305406.t002
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Binary. Binary encoding converts a single nucleotide (A, C, G, U) into a four-dimensional

binary vector (0, 1) [47]. For example, the nucleotides A, C, G, and U of are represented as (1,

0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1), respectively. Therefore, a 41-bp nucleotide

sequence can be represented as a 164-dimensional feature vector.

Enhanced Nucleic Acid Composition (ENAC). ENAC encodes sequences based on the

local nucleic acid composition (NAC) with a fixed-length window of size k, starting at the 50

end and moving to the 30 end. The default k is 5 [48]. For a 41-bp sequence, ENAC produces

148 dimensional feature vector, which is defined as E = (b1, b2, . . ., bn) and

bj ¼
Ni

k
; i 2 A;C;G;Uf g ð1Þ

where Ni represents the number of i-th nucleotides in j-th window and n is (sequence length −
k + 1).

Nucleotide Chemical Property (NCP). NCP converts RNA nucleotides into three-

dimensional vectors based on ring structure, functional group, and hydrogen bond properties.

NCP encodes the nucleotides, A, C, G, and U as (1, 1, 1), (0, 1, 0), (1, 0, 0), and (0, 0, 1), respec-

tively. For a given 41-bp RNA sequence, NCP produces a 3×41 (= 123)-dimensional feature

vector.

Accumulated Nucleotide Frequency (ANF). ANF extracts numeric information from

nucleotide sequences by analyzing the distribution of nucleotide types in the RNA [49]. The

mathematical function of the ANF feature for a specific nucleotide ni at the i-th position in the

RNA sequence is as follows:

di ¼
1

jNij

Xi

j¼1
f ðnjÞ; f ðnjÞ ¼

1 if nj ¼ ni

0; otherwise

(

ð2Þ

where |Ni| represents the length string up to the i-th position {n1, n2, . . ., ni} in the sequence.

Therefore, the ANF converts 41-bp RNA sequences into 41-dimensional feature vectors.

Electron-Ion Interaction Pseudopotentials (EIIP). EIIP encoding converts RNA

sequence data into numeric feature vectors by replacing each nucleotide with its correspond-

ing electron energy. The electron energies for A, C, G, and U, are 0.1260, 0.1340, 0.0806 and

0.1335, respectively [50]. This method generates a 64-dimensional feature vector for a

sequence. It is computed as follows:

D ¼ ½EIIPAAA � fAAA;EIIPAAC � fAAC;EIIPAAG � fAAG; . . . ; EIIPUUU � fUUU� ð3Þ

where EIIPmno = EIIPm + EIIPn + EIIPo, and m, n, o 2 {A, C, G, U}; fmno represents the trinucle-

otide frequency.

Di-Nucleotide Composition (DNC). DNC encoding generates a 16-dimensional feature

vector for an RNA sequence by counting the frequencies of all possible dinucleotide combina-

tions. DNC can be extracted as:

f m; nð Þ ¼
Km;n

K � 1
; m; n 2 A;C;G;Uf g ð4Þ

where Km,n is the dinucleotide combination frequencies by m and n nucleotides.

Tri-Nucleotide Composition (TNC). TNC encoding generates a 64-dimensional feature

vector for an RNA sequence by counting the frequencies of all possible trinucleotide combina-

tions. TNC can be expressed as:

f m; n; oð Þ ¼
Km;n;o

K � 2
; m; n; o 2 A;C;G;Uf g ð5Þ
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where Km,n,o represent the frequencies of m, n, and o trinucleotide combinations, and m, n,

and o can make any set among ‘AAA’, ‘AGA’, ‘ACA’, . . ., and ‘UUU’.

Composition of k-spaced Nucleic Acid Pairs (CKSNAP). CKSNAP encoding calculates

the frequencies of k-spaced nucleotides pairs in an RNA sequence, where k (0, 1, 2, 3, 4, 5) is

the distance between nucleotides in the pair [51]. If we consider k = 0, then we get 16 k-spaced

nucleotide pairs: ‘AA’, ‘AC’, ‘AG’, ‘AU’, ‘CA’, ‘CC’, ‘CG’, ‘CU’, ‘GA’, ‘GC’, ‘GG’, GU’, ‘UA’,

‘UC’, ‘UG’, ‘UU. The CKSNAP encoding can be expressed as follows:

NAA

Ntotal
;

NAC

Ntotal
;

NAG

Ntotal
;

NAG

Ntotal
;

NCA

Ntotal
; . . . ;

NUU

Ntotal

� �

16

ð6Þ

where NAA represents the total number of nucleotide pairs in the entire RNA sequences and

Ntotal is the total number of pairs in the RNA sequences with the gap space k.

Reverse Complement Kmer (RCKmer). RCKmer is a concise variant of Kmer that works

by removing reverse complement pairs. In Kmers, at k = 2, we obtain 16 Kmer nucleotides

(i.e., ‘AA’, ‘AC’, ‘AG’, ‘AU’, ‘CA’, ‘CC’, ‘CG’, ‘CU’, ‘GA’, ‘GC’, ‘GG’, GU’, ‘UA’, ‘UC’, ‘UG’,

‘UU’). However, after removing reverse Kmer (e.g., ‘UU’ is the reverse complement of ‘AA’),

we are left with 10 unique Kmers: ‘AA’, ‘AC’, ‘AG’, ‘AU’, ‘CA’, ‘CC’, ‘CG’, ‘GA’, ‘GC’ and ‘UA’.

These 10 Kmers can be then used to create a feature vector.

Pseudo Electron-Ion Interaction Pseudopotentials (PseEIIP). PseEIIP is a feature

encoding method that calculates the average values across trinucleotide sequences to generate

a 64-dimensional feature vector, consistent with the dimensionality of the original EIIP model.

By focusing on the mean EIIP values, PseEIIP captures the overall electron-ion interaction ten-

dencies within trinucleotide segments, providing a nuanced yet comprehensive feature set.

BPB approach. The Bi-profile Bayes (BPB) feature encoding is a technique that encodes

the sequence data using the posterior probability [52]. To calculate the posterior probability of

each position of the sequence samples, we consider the following Baye’s theorem:

P f þjSð Þ ¼
PðSjf þÞPðf þÞ

PðSÞ
ð7Þ

P f � jSð Þ ¼
PðSjf � ÞPðf � Þ

PðSÞ
ð8Þ

where S = {s1, s2,� � �,SL} is the sequence sample, f+ is the positive dataset, f− is the negative data-

set, P(f+) is the prior probability, Pðf þjSÞ ¼ fpþ
1
; pþ

2
; � � � ; pþL g and Pðf � jSÞ ¼ fp�

1
; p�

2
; � � � ; p�L g

are the posterior probabilities for positive and negative samples, respectively. L is the length of

sequences. The BPB method generates a numeric vector for a sequence sample DBPB with

dimension L×2 by combining their bi-profiles posterior probabilities.

CTD approach. The CTD feature encoding method is based on three sequence informa-

tion descriptors: C (nucleotide composition), T (nucleotide transition), and D (nucleotide dis-

tribution) [53]. Nucleotide composition defines the percentage of each nucleotide within a

sequence. Nucleotide transition describes the frequency percentage of transition between the

four nucleotides at adjacent positions. The third descriptor, nucleotide distribution was calcu-

lated based on five relative positions: 0 (first one), 25%, 50%, 75%, and 100% (last one) for

each nucleotide within the sequence. This method results in the generation of a 30-D feature

vector.

Kmer. The Kmer encoding method constructs a feature vector based on the nucleic acid

composition within segments of k nucleotides. The value of k can vary corresponding mono-,

di-, tri-, tetra-, and pentanucleotides. This technique can generate a 4k dimensional feature
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vectors. For instance, when k = 2, the method generates 4k = 16 dimensional feature vector for

a given RNA sequence by counting the frequencies of all possible dinucleotide combinations.

The mathematical representation is as follows:

f m; nð Þ ¼
Km;n

K � 1
; m; n 2 A;C;G;Uf g ð9Þ

where Km,n is the dinucleotide combination frequencies by m and n nucleotides. Here, we set k
to 4.

NCP-ND approach. The nucleotide chemical properties and nucleotide distribution

(NCP-ND) encoding utilizes both the chemical property of nucleotides and their specific dis-

tribution at given positions to generate a combined features [54]. In the NCP component,

nucleotides A, C, G, and U are encoded as (1, 1, 1), (0, 1, 0), (1, 0, 0), and (0, 0, 1), respectively,

based on the properties of ring structure, hydrogen bond, and functional group. The ND cal-

culates the distribution di of the i-th nucleotide mi as follows:

di ¼
1

i

XL

j¼1

f ðmjÞ; f qð Þ ¼
1; if mj ¼ q

0; otherwise
ð10Þ

(

where q2{A,C,G,U} and L is the sequence length. Therefore, each of the sample sequences

becomes an L×4 dimensional numerical vector DNCP_ND.

NPS approach. The nucleotide pair spectrum (NPS) is a sequence encoding method that

generates an occurrence frequency vector of an RNA sequence by counting the k-spaced

nucleotide pairs [55]. The k-spaced nucleotide pair n1{k}n2 indicates the nucleotide pair of n1

and n2 excluding k-spaces. The occurrence frequency can be generated as follows:

Fn1fkgn2
¼

Cðn1fkgn2Þ

L � k � 1
ð11Þ

where C(n1{k}n2) is the number of nucleotide pair n1{k}n2 in a sequence window with length L
−k−1. The parameter k comes from 0 to dmax, and dmax = 3 and each of the RNA sequences

can be converted as a numeric vector DNPS with a dimension of 4×4×(dmax+1).

NPPS approach. The nucleotide pair position specificity (NPPS) encoding method quan-

tifies the statistical information based on the position-specific single nucleotide and k-spaced

nucleotide pairs [56]. For a given sequence, it calculates the frequency matrix as follows:

FþS ¼

f þSðA;1Þ f þSðA;2Þ � � � f þSðA;LÞ
f þSðC;1Þ f þSðC;2Þ � � � f þSðC;LÞ
f þSðG;1Þ f þSðG;2Þ � � � f þSðG;LÞ
f þSðU;1Þ f þSðU;2Þ � � � f þSðU;LÞ

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð12Þ

Fþd ¼

f þdðAA;1Þ f þdðAA;2Þ � � � f þdðAA;L� k� 1Þ

f þdðAC;1Þ f þdðAC;2Þ � � � f þdðAC;L� k� 1Þ

..

. ..
. . .

. ..
.

f þdðUU;1Þ f þdðUU;2Þ � � � f þdðUU;L� k� 1Þ

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð13Þ

where Fþs is the (4×L) dimensional probability matrix of the single nucleotides occurring in the

specific position of positive data samples, Fþd is (16×(L−k−1)) dimensional probability matrix

of the k-spaced nucleotide pairs occurring in the specific position of positive data sample.
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Similarly, the probability matrix F�s and F�d are generated for the negative data samples. Then

the conditional probability between a single nucleotide (A) and k-spaced nucleotide pair (AG)

can be calculated as:

pþi ¼
f þdðAG;iÞ

f þsðG;iþkÞ
and p�i ¼

f �dðAG;iÞ

f �sðG;iþkÞ
ð14Þ

Finally, the NPPS encoding converts a sequence to an (L−k−1) dimensional vector:

DNPPS ¼ Pþ � P� ð15Þ

where Pþ ¼ ½pþ
1
; � � � ; pþL� k� 1

� and P� ¼ ½p�
1
; � � � ; p�L� k� 1

�. In this study, we set k to 0.

PseKNC approach. Pseudo k-nucleotide component (PseKNC) [57] converts the

sequence data into the feature vector using the local and global information of RNAs as fol-

lows:

D ¼ ½d1; d2; � � � ; d4k ; d4kþ1; � � � ; d4kþl�
T

ð16Þ

where

du ¼

fu
P4k

i¼1
fi þ w

Pl

j¼1
yj

ð1 � u � 4kÞ

wyu� 4k

P4k

i¼1
fi þ w

Pl

j¼1
yj

ð4k � u � 4k þ lÞ

ð17Þ

8
>>>><

>>>>:

du (u = 1,2,� � �,4k) is the occurrence frequency of k-tuple nucleotide compositions, w is the

weight factor, λ is the number of the counted compositions correlated along RNA sequences,

and

yj ¼
1

L � j � 1

XL� j� 1

i¼1

YðRiRiþ1;RiþjRiþjþ1Þ; ðj ¼ 1; 2; . . . ; l; l < LÞ ð18Þ

Y RiRiþ1;RiþjRiþjþ1

� �
¼

1

m

Xm

u¼1

½PuðRiRiþ1Þ � PuðRiþjRiþjþ1Þ�
2

ð19Þ

where μ is the number of RNA physiochemical properties used, RiRi+1 is the i-th position dinu-

cleotide, and Pυ(RiRi+1) is the corresponding standardized value of ν-th RNA local structural

property.

Word2vec. Word2vec (W2V), an essential feature embedding method based on natural

language processing (NLP), is extensively employed in text data analysis and has proven partic-

ularly effective in various bioinformatics pattern recognition tasks involving sequence data

[58–61]. W2V utilizes two algorithms: continuous bag-of-words (CBOW) and continuous

skip-gram. While CBOW predicts the current words from its context, skip-gram predicts the

context from the neighboring words. In this study, we employed the skip-gram algorithm to

train a W2V model on 162 RNA sequences retrieved from RNAcentral [62] using the key

words “Human”, “Rfam”, and “non-coding RNA”. This resulted in 64-dimensional feature

vectors for each nucleotide.

Implemented ML classifiers

We implemented eight ML methods to develop a predictor for identifying 2-OM RNA modifi-

cation sites. These methods included four tree-based algorithms (RF, XGB, LGBM, and CBC),
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two decision boundary-based classifiers (SVM, LR), and other classifiers (NB, KNN). It should

be noted that all ML models were implemented with the following libraries and packages,

including the scikit-learn (https://scikit-learn.org/), XGBoost (https://xgboost.readthedocs.io/

), CatBoost (https://catboost.ai/) and lightGBM (https://lightgbm.readthedocs.io/). A brief

description of these methods is provided as follows:

RF. RF is one of the most popular supervised ML algorithms, which is broadly used in bio-

informatics for wide-range of problems [63–69]. RF combines numerous decision trees trained

on the different training samples and predicts the class of new samples based on the majority

voting techniques. Thus, the RF method delivers a highly powerful classification decision.

SVM. SVM is a robust supervised learning algorithm that are widely used for classification

problems. SVMs work by finding a hyperplane, which is a flat surface in a higher-dimensional

space, that best separates the data points into two classes. To improve their ability to classify

complex data, SVMs use a kernel function to transform the low-dimensional data into high-

dimensional space. This makes SVMs as a powerful tool for bioinformatics applications, where

the data if often high-dimensional and complex [45, 68–70].

XGB. The XGB is a popular ensemble-based ML algorithm that is widely used in regres-

sion and classification tasks, especially on large datasets, which is common in bioinformat-

ics [41, 45]. XGB achieves high predictive ACC by combining the predictions of multiple

individual decision trees, which are trained using a gradient boosting approach. One of the

key strengths of XGB is its ability to control overfitting, which is a common problem in ML.

XGB does this by using L1 (Lasso regression) and L2 (ridge regression) regularization meth-

ods to penalize the weights of the individual decision trees. This helps to reduce the com-

plexity of the ensemble model and improve its robustness. XGB is also designed to

efficiently handle sparse datasets, which are common in high-dimensional biological data.

XGB’s architecture is optimized for scalability and parallel processing, allowing it to per-

form computations on multiple cores, which significantly reduces memory usage and

computational time.

LGBM. LGBM is a highly efficient ML algorithm that is known for its fast training times,

high efficiency, low memory usage, and ability to handle large datasets without sacrificing

accuracy on a variety of tasks, including classification, regression, and ranking [71]. Like XGB,

LGBM is based on decision trees, but it incorporates several advanced computing techniques,

such as optimizations for sparse data structures, parallel processing, multiple loss functions,

regularization techniques, bagging, and early stopping to prevent overfitting. What particularly

sets LGBM apart are two innovative methodologies: Gradient-based One-Side Sampling

(GOSS) and Exclusive Feature Bundling (EFB). GOSS accelerates the training process by keep-

ing the most informative instances while filtering out less important ones, resulting in more

focused and efficient learning. EFB, on the other hand, improves efficiency by grouping mutu-

ally exclusive features, effectively reducing the dimensionality of the feature space without sig-

nificant information loss.

CBC

CBC represents an advanced ML-based algorithm, which is based on gradient-boosted deci-

sion trees methodology [72, 73]. This algorithm is particularly effective in handling both classi-

fication and regression tasks that incorporate categorical features. CBC employs a

combination of ordered boosting, random permutations, and gradient-based optimization to

achieve superior classification performance on large and complex datasets featuring categori-

cal variables. Its robustness and efficiency have led to widespread adoption in various bioinfor-

matics domains, notably in RNA modification identification task [74].
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NB

A NB classifier is the probabilistic ML model built based on the principles of Bayes’ theorem,

with the foundational assumption of conditional independence among all pairs of input fea-

tures. This model is extensively applied across various bioinformatics challenges, especially

sequence-based function prediction [75]. Among the different variants of Naive Bayes classifi-

ers, we implemented here the Gaussian Naive Bayes classifier.

KNN

The KNN algorithm is a popular ML technique used for classification and regression tasks. It

relies on the idea that similar data points tend to ‘K’ most similar data points in the training

dataset. The homogeneity of different data points is measured by the Euclidean distance

method to find the neighbors. Moreover, the right choice of ‘K’ is crucial to better performance

of the KNN method. It is an effective method in classification tasks of bioinformatics fields

[76, 77].

LR

LR is a well-known generalized linear ML technique. It is used to classify binary classification

problems using datasets without multi-collinearity. LR produces a probability value that lies

between 0 to 1 for each data sample, which can be used to predict the likelihood of a sample

belonging to one of the two classes. This makes LR a useful technique for bioinformatics appli-

cations, such as DNA, RNA, and protein modification site prediction [78, 79]. Additionally,

the search range for the hyperparameters of ML classifiers is given in the S1 Table.

Meta-learning approach

We generated baseline models (BMs) by combining eight ML algorithms with 18 feature

encoding methods in a one-to-one manner. This resulted in a total of 144 BMs, each of which

produced prediction probability scores (PBS) in 5-fold cross-validation (CV) trial. To develop

the final meta-prediction model, we used the LR model as a meta-learning method. The meta-

predictor generates the final probability scores by analyzing the PBS of BMs. The meta-predic-

tor model is as follows:

log
P

1 � P

� �

¼ b0 þ b1X1 þ b2X2 þ . . .þ bnXn ð20Þ

where βo and βi are the regression coefficients, Xi is the probability scores generated by the i-th
BMs and n = 144 is the total number of the BMs. The meta-predictor generates probability

scores between 0 and 1, with a score of 0.5 or higher indicating a 2-OM site and a score below

0.5 indicating a non-2-OM site.

Performance evaluation

To assess the performance of the prediction models, we used seven statistical measures: sensi-

tivity (SEN), specificity (SPE), precision (PRE), ACC, Matthew’s correlation coefficient

(MCC), AUC, and area under the precision-recall curve (AUPRC). Most compatible measures

were defined as

SEN ¼
TP

TPþ FN
ð21Þ
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SPE ¼
TN

TN þ FP
ð22Þ

PRE ¼
TP

TP þ FP
ð23Þ

ACC ¼
TP þ TN

TP þ FN þ FP þ TN
ð24Þ

MCC ¼
TP � TN � FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTN þ FNÞ � ðTP þ FPÞ � ðTN þ FPÞ � ðTP þ FNÞ

p ð25Þ

where TP is the number of true positives, FP is the number of false positives, TN is the number

of true negatives, and FN is the number of false negatives. The receiver operating characteristic

curve (ROC) is also utilized to visualize the prediction performance of the model according to

5-fold CV.

Results

Nucleotide preference analysis

The nucleotide patterns surrounding the central position in sequence data play a pivotal role

in classification tasks. We used the kpLogo command-based tool [80] to perform sequence

logo analysis to examine the nucleotide distribution among the 2-OM (positive) and non-

2-OM (negative) samples. Fig 2 shows the probability logo (pLogo) and k-mer probability logo

(kpLogo) for k-mer of 1 to 4, highlighting the most significantly enriched or depleted base

pairs and sequence motifs, respectively. The pLogo result suggests that the base pairs A, G, A,

and U were highly enriched at positions 22, 23, 24, and 25, respectively, for 2-OM sites. Con-

versely, the base pairs G, A, G, and G are depleted at the same positions 22, 23, 24, and 25,

respectively, for non-2-OM sites (Fig 2A). The kpLogo results show that the 2-OM samples

presented the most significant motifs of ACAG, AGAU, GAUC, AUCG, UCGG, CGG,

GGAA, and GAAG, which occurred at positions 20, 22, 23, 24, 25, 26, 27, and 28, respectively

(Fig 2B). The depletion motifs were the same as the pLogo findings. Overall, the enrichment

and depletion results mostly occurred on the upstream side of positive and negative samples.

These results suggested that the distinct nucleotide preferences and unique motifs made it pos-

sible to differentiate RNA 2-OM modification/non-modification sites.

Baseline models: Construction and evaluation

ML classifiers effectively leverage feature information from the training dataset to categorize

the class. However, the performance of each classifier can vary depending on the feature

encodings used, as each encoding has unique characteristics [69, 77]. In this study, we

employed eighteen different feature encoding algorithms (Binary, DNC, TNC, RCKmer,

ENAC, CKSNAP, ANF, NCP, EIIP, PseEIIP, Kmer, BPB, CTD, NCP-ND, NPS, NPPS,

PseKNC, W2V), and assessed their inherent patterns between 2-OM and non-2-OM sites

using eight ML classifiers, including four tree-based classifiers (RF, LGBM, XGB, CBC), two

decision boundary-based classifier (SVM, LR), and others (NB, KNN). Notably, we trained

each model via a 5-fold CV and subsequently evaluated the optimal model using an indepen-

dent dataset. Firstly, we conducted the performance analysis by using generic datasets.

Detailed performance of the 144 baseline models via CV and their transferability on the
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independent dataset are shown in S1 and S2 Figs in S1 File and S2 Table. We observed that the

overall performance trend of each classifier with 18 different encodings was similar between

the training and independent datasets. We observed that W2V, NPPS, and Binary were the top

encoding algorithms. The LGBM classifiers achieved very high performance with an average

MCC of 0.604 across 18 encodings, SVM and LR provided MCCs of 0.585 and 0.535. CBC, RF,

NB, KNN and XGB MCCs of 0.580, 0.516, 0.491, 0.467 and 0.505, respectively. These results

indicate that all eight ML algorithms worked well on the given task.

To assess the performance of the baseline models, we evaluated three global statistical mea-

sures (MCC, ACC, AUC) on the training and independent datasets for generic cases (Fig 3).

The performance of the baseline models in each ML showed a similar trend with respect to

encodings. RFs with DNC, TNC, PseEIIP, Binary, NCP-ND, BPB, NPPS, PseKNC, and W2V

encodings surpassed MCC of 0.550, ACC of 0.750, and AUC of 0.820 for both the training and

independent datasets. The SVM with W2V exceeded the performance on MCC of 0.710, ACC

of 0.850, and AUC of 0.930. In contrast, the XGB with CKSNAP, NPS, NPPS, and W2V

attained performance exceeding MCC of 0.550, ACC of 0.770, and AUC of 0.840 during train-

ing and testing. Also, the W2V encoding revealed significant prediction performance with

CBC and LR where overcoming the MCC of 0.650, ACC of 0.820, and AUC of 0.910. Impor-

tantly, the LGBM with Binary, NCP, EIIP, BPB, NPPS, and W2V showed high performance

compared to other baseline models, where they produced a surpassed MCC of 0.640, ACC of

0.820, and AUC of 0.900 on training and independent datasets. Among the 144 baseline mod-

els, the best single model was LGBM_W2V. The common thought is that an optimal single-

feature classifier is considered as the final prediction model. Generally, a single-feature classi-

fier varies the performance, depending on the size of the datasets [81, 82]. For example, they

sometimes fail to perform well on large-scale datasets due to the dimensionality of the data

A.

B.

Fig 2. Nucleotide preference pattern analysis of 2-OM RNA modification sites to understand the effect of base pairs and motifs of sequence data. (A)

pLogo, and (B) kpLogo.

https://doi.org/10.1371/journal.pone.0305406.g002
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points. Therefore, a meta-learning ensemble strategy was considered to stack the baseline or

single-feature models for enhanced prediction.

Next, we trained the meta-classifiers implementing multiple baseline models on the specific

(Am, Cm, Gm, Um) datasets and evaluated their performance on the test dataset. Three statis-

tical measures (MCC, ACC, AUC) were illustrated for respective specific nucleotide modifica-

tions in S3-S6 Figs in S1 File. The LGBM_W2V and SVM_W2V were regarded as the best

baseline models for all nucleotide-specific datasets.

Impact of meta-learning on the development of Meta-2OM

The stacking approach represents an advanced ensemble method that enhances prediction

performance by amalgamating the strengths of multiple models [45, 64, 83–87]. Unlike con-

ventional ensemble approaches that primarily use averaging and voting, stacking employs a

Fig 3. Performance analysis of the baseline classifiers. The classifiers were generated through eight different MLs with eighteen single-feature encoding

methods. The MCC, ACC, and AUC are presented on the training (A, B, C) and independent (D, E, F) datasets.

https://doi.org/10.1371/journal.pone.0305406.g003
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meta-model to adeptly combine the forecasts from its base models. This meta-model is trained

using the base models’ outputs, optimizing their inputs to generate a refined, often superior,

final prediction [88, 89]. The notable ACC of stacking is attributed to its proficiency in maxi-

mizing the positives of different classifiers while offsetting their limitations. In our research,

we harnessed stacking to amalgamate predictions from eight distinct models. Through a meta-

learner, which identified patterns among individual predictions, we drew a diverse set of fea-

tures derived from RNA sequences and leveraged the unique strengths of each classifier to ele-

vate the overall model efficiency. Firstly, we ranked the 144 baseline models by their AUC

(Table 3). We then used these rankings to stack the probability scores of the generic (Nm)

baseline models using LR. Specifically, we developed 20 meta-classifiers, leveraging the top 1,

2, 4, 8, 12, 16, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, and all 144 baseline models.

Fig 4 shows that the performance of these meta-classifiers progressively improves as the num-

ber of probabilistic features (baseline models) increases, both in the training and independent

datasets. Our analysis indicating that employing all baseline models, our meta-classifiers

achieved the highest AUC on the training dataset as well as the independent dataset.

Table 3. Ranking of the baseline models in the descending order of the AUC values.

Rank Baseline model Rank Baseline model Rank Baseline model Rank Baseline model Rank Baseline model

1 LGBM_W2V 31 CBC_PseEIIP 61 NB_Kmer 91 LGBM_RCKmer 121 RF_CTD

2 SVM_W2V 32 CBC_TNC 62 RF_Kmer 92 SVM_CTD 122 KN_NPS

3 LR_W2V 33 LGBM_PseEIIP 63 LR_DNC 93 RF_BPB 123 LR_EIIP

4 LGBM_NPPS 34 LGBM_TNC 64 KN_W2V 94 NB_DNC 124 LR_PseKNC

5 CBC_W2V 35 CBC_NCP 65 CBC_CTD 95 LR_BPB 125 KN_CKSNAP

6 LGBM_Binary 36 CBC_PseKNC 66 NB_NPPS 96 NB_Binary 126 KN_PseKNC

7 LGBM_EIIP 37 LGBM_PseKNC 67 RF_DNC 97 XGB_NCP-ND 127 NB_EIIP

8 LGBM_BPB 38 CBC_NCP-ND 68 XGB_DNC 98 RF_Binary 128 NB_NPS

9 CBC_NPPS 39 LR_CKSNAP 69 NB_PseEIIP 99 RF_NCP 129 KN_ENAC

10 SVM_Kmer 40 CBC_EIIP 70 NB_TNC 100 LR_CTD 130 KN_BPB

11 LGBM_NCP 41 LR_NPPS 71 LR_Binary 101 XGB_Kmer 131 NB_CTD

12 SVM_NCP-ND 42 LR_NPS 72 LR_NCP 102 NB_NCP-ND 132 NB_CKSNAP

13 LGBM_Kmer 43 CBC_DNC 73 XGB_PseKNC 103 NB_NCP 133 NB_RCKmer

14 LGBM_NCP-ND 44 SVM_DNC 74 SVM_EIIP 104 XGB_Binary 134 KN_EIIP

15 SVM_NCP 45 SVM_PseKNC 75 SVM_BPB 105 NB_BPB 135 KN_RCKmer

16 SVM_Binary 46 CBC_ENAC 76 KN_Binary 106 XGB_BPB 136 KN_CTD

17 SVM_CKSNAP 47 LR_Kmer 77 KN_NCP 107 RF_ENAC 137 CBC_ANF

18 SVM_NPS 48 LGBM_DNC 78 KN_NPPS 108 KN_Kmer 138 LGBM_ANF

19 CBC_Kmer 49 LR_TNC 79 RF_NPS 109 RF_EIIP 139 SVM_ANF

20 SVM_NPPS 50 RF_W2V 80 RF_NCP-ND 110 XGB_NCP 140 LR_ANF

21 LGBM_ENAC 51 LR_NCP-ND 81 XGB_TNC 111 RF_RCKmer 141 RF_ANF

22 SVM_TNC 52 RF_NPPS 82 XGB_PseEIIP 112 KN_TNC 142 XGB_ANF

23 SVM_PseEIIP 53 LGBM_CTD 83 LR_PseEIIP 113 XGB_EIIP 143 NB_ANF

24 CBC_Binary 54 XGB_NPPS 84 NB_PseKNC 114 XGB_RCKmer 144 KN_ANF

25 SVM_ENAC 55 XGB_W2V 85 LR_ENAC 115 XGB_ENAC

26 CBC_NPS 56 RF_TNC 86 KN_NCP-ND 116 LR_RCKmer

27 LGBM_CKSNAP 57 RF_PseEIIP 87 NB_W2V 117 NB_ENAC

28 LGBM_NPS 58 RF_PseKNC 88 CBC_RCKmer 118 KN_PseEIIP

29 CBC_CKSNAP 59 XGB_CKSNAP 89 RF_CKSNAP 119 XGB_CTD

30 CBC_BPB 60 XGB_NPS 90 SVM_RCKmer 120 KN_DNC

https://doi.org/10.1371/journal.pone.0305406.t003
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To evaluate the effectiveness of various meta-classifiers, we employed six additional ML

methods (LGBM, XGB, RF, SVM, KNN, NB) as a meta-classifier to stack baseline models. We

then assessed and compared their performance metrics, as provided in Table 4. The results

showed that the LR-based meta-classifier, which aggregated predictions from 144 baseline

models, surpassed all other ML methods-based stacking models in terms of performance on

independent test datasets. Conversely, the other meta-classifiers exhibited signs of overfitting,

Fig 4. Effect of the employed feature sets on meta-classifiers. The 20 meta-classifiers were generated. The performance was compared based on (A) training

and (B) independent datasets.

https://doi.org/10.1371/journal.pone.0305406.g004
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demonstrated by superior performance on the training datasets compared to the test dataset.

Therefore, we selected the LR-based meta-model incorporating all baseline models, as our

final predictor, and named Meta-2OM. Meta-2OM achieved the best performance with SEN

of 0.871, SPE of 0.918, ACC of 0.894, MCC of 0.791, PRE of 0.915, and AUC of 0.958 on the

training dataset. On the independent datasets, it achieved a SEN of 0.836, SPE of 0.904, ACC

of 0.870, MCC of 0.743, PRE of 0.898, and AUC of 0.940 (Table 4). Compared to the best-per-

forming baseline model, LGBM_W2V, Meta-2OM demonstrated improvements of 9.5% in

MCC, 4.1% in ACC, 2.6% in AUC on the training dataset, alongside increases of 2.8% in

MCC, 1.3% in ACC, and 1.0% in AUC on the independent dataset, thus substantiating the

advanced efficacy of our proposed method.

Comparison of performance based on generic and nucleotide-specific

modifications

The 2-OM (Nm) datasets contained four distinct nucleotides (Am, Cm, Gm, Um) modifica-

tions. To ascertain the efficacy of Meta-2OM for each type of nucleotide modification, we

employed LR-based meta-classifiers, previously demonstrated as the most effective in the

generic model development, across all specific nucleotide modifications. Each nucleotide

modification dataset was divided into the same 20 groups as in the generic case and corre-

sponding the stacking models were developed. The performances of these models are shown

in S7-S10 Figs in S1 File, with the meta-classifier aggregating all 144 baseline models achieved

the highest AUC score across all nucleotide-specific cases. Moreover, the capability of the

generically trained model (Meta-2OM) to distinguish between positive and negative modifica-

tion sites was compared against that of the nucleotide-specific model using the independent

dataset, as shown in Fig 5 and S3 Table. Remarkably, the generic model (Meta-2OM) more

accurately classified the positive and negative sites than nucleotide-specific models. This sug-

gests that Meta-2OM effectively identifies both collective (Nm) and individual nucleotide

modifications (Am, Cm, Gm, Um) across comprehensive transcriptome-wide datasets,

highlighting its robust applicability and superior predictive performance.

Comparison of Meta-2OM with existing methods

To demonstrate the superiority of Meta-2OM, we conducted a comparative analysis against

existing state-of-the-art methods [32–39, 42]. Several methods were excluded from this com-

parison due to the use of different datasets, inactive web services, or the absence of standalone

software packages. Additionally, we did not include methods such as NmRF [32], the approach

Table 4. Performance comparison among seven meta-classifiers incorporating the 144 baseline models on the training and test datasets.

Meta-classifier Training Test

SEN SPE ACC MCC AUC SEN SPE ACC MCC AUC

LR 0.871 0.918 0.894 0.791 0.958 0.836 0.904 0.870 0.743 0.940

LGBM 0.960 0.975 0.968 0.936 0.996 0.792 0.893 0.843 0.692 0.923

XGB 0.962 0.980 0.971 0.942 0.975 0.805 0.910 0.857 0.719 0.873

RF 0.962 0.977 0.970 0.940 0.994 0.803 0.898 0.850 0.704 0.922

SVM 0.967 0.978 0.973 0.945 0.997 0.820 0.903 0.862 0.727 0.933

KNN 0.964 0.981 0.973 0.946 0.976 0.814 0.915 0.864 0.733 0.879

NB 0.964 0.979 0.971 0.943 0.972 0.816 0.905 0.860 0.723 0.862

Bold indicates the highest score for the corresponding statistical measure

https://doi.org/10.1371/journal.pone.0305406.t004
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by Huang et al. [34], iRNA-PseKNC (2methyl) [35], iRNA-2OM [37], and Chen et al.’s

method [39], as these were trained exclusively on datasets featuring adenine nucleotides (Am)

at the central positions, unlike Meta-2OM which can predict Nm modification sites for all four

nucleotides.

Fig 5. Comparison of prediction performance between Meta-2OM generic model and nucleotide-specific model under four different specific nucleotide

modifications independent datasets.

https://doi.org/10.1371/journal.pone.0305406.g005
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Finally, we selected the i2OM method [41] and H2Opred [42], trained on larger datasets,

that can predict both Nm modification sites and specific nucleotide-based sites. The results

demonstrated that Meta-2OM slightly better than H2Opred and significantly better than

i2OM in identifying Nm modification sites as well as individual types of nucleotide modifica-

tion sites (Table 5 and Fig 6). Upon assessing the performance across individual nucleotide

datasets, Meta-2OM demonstrated marginal enhancements in the Am, Cm, and Um datasets

when compared to H2Opred. However, in the case of Gm, H2Opred exhibited superior per-

formance relative to Meta-2OM. Additionally, Meta-2OM significantly surpassed the perfor-

mance of i2OM across these assessments.

Furthermore, Meta-2OM also outperformed single ML-based methods, such as RF-based

NmRF [32], RF-based NmSEER V2.0 [36], SVM-based Huang et al. [34], and CNN-based

Deep-2’-O-Me [38], in predicting Nm sites on the independent dataset, achieving an AUC of

0.940. Overall, the meta-learning approach implemented in the Meta-2OM method is respon-

sible for its improved performance compared to the existing predictors.

Probabilistic-feature analysis

Meta-2OM exhibited superior performance compared to the single-feature models on both

the training and independent datasets. To delve deeper into how the model works, we con-

ducted SHapley Additive exPlanation (SHAP) analysis on the probabilistic features generated

by the 144 baseline models. The most influential 20 are shown in Fig 7. The importance rank-

ing of the baseline models revealed that classifiers such as LGBM, CBC, LR, and SVM methods

contributing more to the prediction than RF, NB, KNN and XGB. Notably, the W2V based

LGBM_W2V, LR_W2V, SVM_W2V, and CBC_W2V among the top 20 made significant con-

tribution, while the remaining models played a complementary role on Meta-2OM prediction.

To further demonstrate the Meta-2OM prediction capability, we applied the t-distributed sto-

chastic neighbor embedding (t-SNE; scikit-learn v.1.0.2) to compute the 2D feature based on

the 144D probabilistic features, as shown in Fig 8. The results demonstrated a clear separation

between positive and negative samples, indicating that the Meta-2OM effectively discerns the

underlying patterns distinguishing 2-OM from non-2-OM modification sequences.

Table 5. Comparison of Meta-2OM with state-of-the-art methods.

Method Am Cm

SEN PRE ACC MCC AUC SEN PRE ACC MCC AUC

i2OM 0.908 0.135 0.461 0.192 0.862 0.774 0.425 0.884 0.518 0.915

H2Opred 0.863 0.906 0.887 0.774 0.943 0.849 0.912 0.883 0.769 0.946

Meta-2OM 0.856 0.918 0.889 0.781 0.946 0.843 0.936 0.892 0.789 0.953

Method Gm Um

SEN PRE ACC MCC AUC SEN PRE ACC MCC AUC

i2OM 0.830 0.431 0.885 0.545 0.934 0.597 0.227 0.779 0.266 0.774

H2Opred 0.853 0.906 0.882 0.765 0.946 0.831 0.809 0.818 0.636 0.898

Meta-2OM 0.850 0.903 0.879 0.759 0.946 0.796 0.837 0.820 0.642 0.907

Method Average value

SEN PRE ACC MCC AUC

i2OM 0.777 0.305 0.752 0.380 0.871

H2Opred 0.849 0.883 0.867 0.736 0.933

Meta-2OM 0.836 0.899 0.870 0.743 0.938

Bold value indicates the highest score for the corresponding statistical measure; Average value indicates Mean(Am, Cm, Gm, Um) under respective measures

https://doi.org/10.1371/journal.pone.0305406.t005
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Web server implementation

We developed a user-friendly and freely accessible web server for Meta-2OM, which is avail-

able at http://kurata35.bio.kyutech.ac.jp/Meta-2OM/. The web server is implemented using

Flask (2.2.2) in the Python program and Apache (2.4.52). Users can easily carry out the predic-

tion by submitting FASTA sequences of 41 bp in length. The prediction results can be

Fig 6. Parallel comparison of the Meta-2OM predictors with state-of-the-art methods based on the nucleotide-specific independent datasets.

https://doi.org/10.1371/journal.pone.0305406.g006
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Fig 7. SHAP plot analysis using the probability features generated by 144 baseline models considered in Meta-2OM. The top 20 were illustrated. The

position on the y-axis is determined by the feature and that on the x-axis by the SHAP value. The color (red to blue) represents the value of the feature from low

to high. The SHAP’s positive and negative values mean that they are associated with a higher and lower prediction, respectively. The features are ordered

according to their importance.

https://doi.org/10.1371/journal.pone.0305406.g007
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downloaded as an Excel file (.csv) with three columns: predicted labels, predicted probability

scores, and sample sequences. The threshold value for predicting Nm modification site is 0.5.

Detailed user guidelines are available on the website’s help page.

Discussion and conclusion

2-OM modification is a prevalent and crucial modification in RNA, necessary for various bio-

logical and functional mechanisms. Accurate identification of 2-OM sites is essential to further

understanding its roles. The biological experimental methods that identify 2-OM sites are

time-consuming, labor-intensive, and expensive [20–22, 24]. To complement such experimen-

tal methods, we have developed a computational model to predict 2-OM sites, using bench-

mark datasets covering all four types of nucleotide modification (Am, Cm, Um, Gm) in the

human chromosomes. Specifically, a total of 12,182 positive and negative samples were

employed to build the model, where each sample consisted of 41 nucleotide base pairs.

In this work, we developed Meta-2OM, a meta-learning-based ML approach for accurately

identifying 2-OM RNA modification sites using sequence information. We first assessed the

prediction performance of eight widely established ML classifiers, where each classifier trained

with 18 types of RNA sequence features. Subsequently, we built a meta-model that integrates

the predictions of the baseline models to enhance the overall prediction accuracy. Meta-2OM

demonstrated superior performance compared to the existing predictors when tested on an

independent dataset. The efficiency of Meta-2OM is attributed to the following factors: (i) uti-

lization of 18 different feature encoding algorithms that capture various intrinsic capabilities

to discriminate between 2-OM and non-2-OM sites; and (ii) construction of meta-model

incorporating 144 baseline models. Therefore, we believe that the current approach can be

Fig 8. Analysis of the probability features generated by 144 baseline models for the negative and positive samples by t-distributed stochastic neighbor

embedding (t-SNE). It represents the discriminative distribution of prediction probabilities. These results are shown for both (A) training and (B) independent

datasets.

https://doi.org/10.1371/journal.pone.0305406.g008
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extended to other sequence-based function prediction problems, including enhancer predic-

tion, peptide therapeutic function prediction, replication original sites prediction, and post-

translational modification sites prediction [90–93]. While Meta-2OM achieves an ACC

exceeding 87% on both training and independent datasets, we expect that incorporating posi-

tion-specific information or natural language processing-based features with variants DL algo-

rithms may enhance the predictive performance. Currently, the proposed Meta-2OM

predictors do not consider RNA tertiary structures, which are crucial for accurate RNA site

prediction. By integrating information about RNA 3D structures into our model, we could sig-

nificantly increase its predictive accuracy. We plan to explore these potential improvements in

our future studies.
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